-
Notifications
You must be signed in to change notification settings - Fork 33
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of github.com:HelgeGehring/femwell
- Loading branch information
Showing
3 changed files
with
266 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,255 @@ | ||
# --- | ||
# jupyter: | ||
# jupytext: | ||
# text_representation: | ||
# extension: .py | ||
# format_name: light | ||
# format_version: '1.5' | ||
# jupytext_version: 1.14.5 | ||
# kernelspec: | ||
# display_name: femwell | ||
# language: python | ||
# name: python3 | ||
# --- | ||
|
||
# # Physics-informed propagation loss model | ||
# | ||
# The ability to locally refine the mesh makes FEM well-suited to problems with very different lengthscales. | ||
# | ||
# One such problem is empirically modeling the propagation loss due to sidewall roughness, for instance as performed in {cite}`Lindecrantz2014`. | ||
|
||
# + tags=["remove-stderr"] | ||
|
||
from collections import OrderedDict | ||
|
||
import numpy as np | ||
import shapely | ||
from scipy.optimize import curve_fit | ||
from shapely.affinity import scale | ||
from shapely.ops import clip_by_rect | ||
from skfem import Basis, ElementTriP0 | ||
from skfem.io.meshio import from_meshio | ||
|
||
from femwell.maxwell.waveguide import compute_modes | ||
from femwell.mesh import mesh_from_OrderedDict | ||
from femwell.visualization import plot_domains | ||
|
||
# - | ||
|
||
# Assume there is some information available about TE waveguide loss as a function of wavelength and width: | ||
|
||
# + | ||
# Foundry-reported information | ||
wavelengths = (1.55, 1.55) | ||
widths = (0.5, 1) | ||
slab_heights = (0.0, 0.0) | ||
losses = ydata = np.array([2, 1]) | ||
core_thickness = 0.22 | ||
n_si = 3.45 | ||
n_sio2 = 1.44 | ||
|
||
# Model hyperparameters | ||
sidewall_extent = 0.01 | ||
|
||
# Format training data | ||
xdata = [] | ||
for wavelength, width, slab_height in zip(wavelengths, widths, slab_heights): | ||
xdata.append((wavelength, width, slab_height)) | ||
xdata = np.array(xdata) | ||
|
||
|
||
# - | ||
|
||
# Assuming sidewall roughness dominates the loss, we prepare the following mesh: | ||
|
||
|
||
def waveguide( | ||
core_width, | ||
slab_thickness, | ||
core_thickness=core_thickness, | ||
slab_width=4, | ||
sidewall_extent=0.02, | ||
sidewall_k=1e-4, | ||
material_k=1e-5, | ||
): | ||
core = shapely.geometry.box(-core_width / 2, 0, +core_width / 2, core_thickness) | ||
|
||
# Core sidewalls (only keep side extensions) | ||
core_sidewalls = core.buffer(sidewall_extent, resolution=8) | ||
core_sidewalls = clip_by_rect(core_sidewalls, -np.inf, 0, np.inf, core_thickness) | ||
|
||
if slab_thickness: | ||
slab = shapely.geometry.box(-slab_width / 2, 0, +slab_width / 2, slab_thickness) | ||
waveguide = shapely.union(core, slab) | ||
clad = scale(waveguide.buffer(5, resolution=8), xfact=0.5) | ||
polygons = OrderedDict( | ||
slab=slab, | ||
core=core, | ||
core_sidewalls=core_sidewalls, | ||
clad=clad, | ||
) | ||
else: | ||
clad = scale(core.buffer(5, resolution=8), xfact=0.5) | ||
polygons = OrderedDict( | ||
core=core, | ||
core_sidewalls=core_sidewalls, | ||
clad=clad, | ||
) | ||
resolutions = dict( | ||
core={"resolution": 0.03, "distance": 0.5}, | ||
core_sidewalls={"resolution": 0.005, "distance": 0.5}, | ||
slab={"resolution": 0.06, "distance": 0.5}, | ||
) | ||
|
||
mesh = from_meshio(mesh_from_OrderedDict(polygons, resolutions, default_resolution_max=10)) | ||
|
||
basis0 = Basis(mesh, ElementTriP0()) | ||
epsilon = basis0.zeros(dtype=complex) | ||
|
||
materials = { | ||
"core": n_si - 1j * material_k, | ||
"core_sidewalls": n_sio2 - 1j * sidewall_k, | ||
"clad": n_sio2, | ||
} | ||
|
||
if slab_thickness: | ||
materials["slab"] = n_si - 1j * material_k | ||
|
||
for subdomain, n in materials.items(): | ||
epsilon[basis0.get_dofs(elements=subdomain)] = n**2 | ||
|
||
return mesh, basis0, epsilon | ||
|
||
|
||
# + | ||
mesh, basis0, epsilon = waveguide( | ||
core_width=0.5, | ||
slab_thickness=0.0, | ||
core_thickness=0.22, | ||
) | ||
|
||
plot_domains(mesh) | ||
basis0.plot(epsilon.real, colorbar=True).show() | ||
basis0.plot(epsilon.imag, colorbar=True).show() | ||
|
||
|
||
# - | ||
|
||
# Now that we have a simulation, we can compute TE0 modes, and fit the hyperparameters `sidewall_extent` and `sidewall_index` to get a better model for loss as a function of waveguide geometry: | ||
|
||
|
||
def compute_propagation_loss( | ||
wavelength, | ||
core_width, | ||
slab_thickness, | ||
core_thickness=core_thickness, | ||
slab_width=4, | ||
sidewall_extent=sidewall_extent, | ||
sidewall_k=1e-4, | ||
material_k=1e-5, | ||
): | ||
mesh, basis0, epsilon = waveguide( | ||
core_width=core_width, | ||
slab_thickness=slab_thickness, | ||
core_thickness=core_thickness, | ||
slab_width=slab_width, | ||
sidewall_extent=sidewall_extent, | ||
sidewall_k=sidewall_k, | ||
material_k=material_k, | ||
) | ||
|
||
modes = compute_modes(basis0, epsilon, wavelength=wavelength, num_modes=1, order=2) | ||
|
||
keff = modes[0].n_eff.imag | ||
wavelength_m = wavelength * 1e-6 # convert to m | ||
alpha = -4 * np.pi * keff / wavelength_m | ||
return 10 * np.log10(np.exp(1)) * alpha * 1e-2 # convert to cm | ||
|
||
|
||
for wavelength, core_width, slab_thickness, loss in zip(wavelengths, widths, slab_heights, losses): | ||
predicted_loss = compute_propagation_loss( | ||
wavelength=wavelength, | ||
core_width=core_width, | ||
slab_thickness=slab_thickness, | ||
core_thickness=core_thickness, | ||
slab_width=4, | ||
sidewall_extent=sidewall_extent, | ||
sidewall_k=3e-4, | ||
material_k=2.5e-6, | ||
) | ||
|
||
print(wavelength, core_width, slab_thickness, predicted_loss, loss) | ||
|
||
|
||
# Pretty close, refine through optimization: | ||
|
||
|
||
def objective_vector(xdata, sidewall_k, material_k): | ||
losses_obj = [] | ||
for wavelength, width, slab_height in xdata: | ||
losses_obj.append( | ||
compute_propagation_loss( | ||
wavelength=wavelength, | ||
core_width=width, | ||
slab_thickness=slab_height, | ||
core_thickness=core_thickness, | ||
slab_width=4, | ||
sidewall_extent=sidewall_extent, | ||
sidewall_k=sidewall_k, | ||
material_k=material_k, | ||
) | ||
) | ||
return losses_obj | ||
|
||
|
||
popt, pcov = curve_fit(objective_vector, xdata, ydata, bounds=(0, [1e-2, 1e-2]), p0=(3e-4, 1e-6)) | ||
|
||
popt, pcov | ||
|
||
for wavelength, core_width, slab_thickness, loss in zip(wavelengths, widths, slab_heights, losses): | ||
predicted_loss = compute_propagation_loss( | ||
wavelength=wavelength, | ||
core_width=core_width, | ||
slab_thickness=slab_thickness, | ||
core_thickness=core_thickness, | ||
slab_width=4, | ||
sidewall_extent=sidewall_extent, | ||
sidewall_k=popt[0], | ||
material_k=popt[1], | ||
) | ||
|
||
print(wavelength, core_width, slab_thickness, predicted_loss, loss) | ||
|
||
widths_plot = np.linspace(0.275, 2.0, 19) | ||
losses_plot_strip = [] | ||
for width in widths_plot: | ||
losses_plot_strip.append( | ||
compute_propagation_loss( | ||
wavelength=1.55, | ||
core_width=width, | ||
slab_thickness=0.0, | ||
core_thickness=core_thickness, | ||
slab_width=4, | ||
sidewall_extent=sidewall_extent, | ||
sidewall_k=popt[0], | ||
material_k=popt[1], | ||
) | ||
) | ||
|
||
# + | ||
import matplotlib.pyplot as plt | ||
|
||
plt.plot(widths_plot, losses_plot_strip, label="strip model") | ||
plt.scatter(widths, losses, label="strip data") | ||
|
||
plt.legend() | ||
plt.xlabel("Core width (um)") | ||
plt.ylabel("Propagation loss (dB/cm)") | ||
# - | ||
|
||
# ## Bibliography | ||
# | ||
# ```{bibliography} | ||
# :style: unsrt | ||
# :filter: docname in docnames | ||
# ``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters