-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* gptq hpu class added * licence added, imports removed * licence update
- Loading branch information
Showing
1 changed file
with
311 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,311 @@ | ||
# MIT License | ||
|
||
# Copyright (c) 2025 Intel Corporation | ||
|
||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
|
||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
|
||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
|
||
from fractions import Fraction | ||
from typing import Any, Dict, List, Optional | ||
|
||
import torch | ||
from torch.nn.parameter import Parameter | ||
|
||
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase | ||
from vllm.model_executor.layers.quantization.base_config import ( | ||
QuantizationConfig) | ||
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead | ||
from vllm.model_executor.parameter import (ChannelQuantScaleParameter, | ||
GroupQuantScaleParameter, | ||
PackedColumnParameter, | ||
PackedvLLMParameter, | ||
RowvLLMParameter) | ||
|
||
|
||
class GPTQHPUConfig(QuantizationConfig): | ||
"""Config class for GPTQ. | ||
Reference: https://arxiv.org/abs/2210.17323 | ||
""" | ||
|
||
def __init__( | ||
self, | ||
weight_bits: int, | ||
group_size: int, | ||
desc_act: bool, | ||
lm_head_quantized: bool, | ||
) -> None: | ||
self.weight_bits = weight_bits | ||
self.group_size = group_size | ||
self.desc_act = desc_act | ||
self.lm_head_quantized = lm_head_quantized | ||
self.pack_factor = Fraction(32, self.weight_bits) | ||
if self.weight_bits not in [2, 3, 4, 8]: | ||
raise ValueError( | ||
"Currently, only 2/3/4/8-bit weight quantization is " | ||
f"supported for GPTQ, but got {self.weight_bits} bits.") | ||
|
||
def __repr__(self) -> str: | ||
return (f"GPTQHPUConfig(weight_bits={self.weight_bits}, " | ||
f"group_size={self.group_size}, " | ||
f"desc_act={self.desc_act})," | ||
f"lm_head_quantized={self.lm_head_quantized}") | ||
|
||
@classmethod | ||
def get_name(cls) -> str: | ||
return "gptq_hpu" | ||
|
||
@classmethod | ||
def get_supported_act_dtypes(cls) -> List[torch.dtype]: | ||
return [torch.bfloat16] | ||
|
||
@classmethod | ||
# Need to figure it out | ||
def get_min_capability(cls) -> int: | ||
return 0 | ||
|
||
@classmethod | ||
def get_config_filenames(cls) -> List[str]: | ||
return ["quantize_config.json"] | ||
|
||
@classmethod | ||
def from_config(cls, config: Dict[str, Any]) -> "GPTQHPUConfig": | ||
weight_bits = cls.get_from_keys(config, ["bits"]) | ||
group_size = cls.get_from_keys(config, ["group_size"]) | ||
desc_act = cls.get_from_keys(config, ["desc_act"]) | ||
lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"], | ||
default=False) | ||
return cls(weight_bits, group_size, desc_act, lm_head_quantized) | ||
|
||
@classmethod | ||
def override_quantization_method(cls, hf_quant_cfg, | ||
user_quant) -> Optional[str]: | ||
|
||
is_valid_user_quant = user_quant == "gptq_hpu" | ||
|
||
if is_valid_user_quant: | ||
return cls.get_name() | ||
|
||
return None | ||
|
||
def get_quant_method(self, layer: torch.nn.Module, | ||
prefix: str) -> Optional["GPTQHPULinearMethod"]: | ||
if (isinstance(layer, LinearBase) or | ||
(isinstance(layer, ParallelLMHead) and self.lm_head_quantized)): | ||
return GPTQHPULinearMethod(self) | ||
return None | ||
|
||
def get_scaled_act_names(self) -> List[str]: | ||
return [] | ||
|
||
|
||
class GPTQHPULinearMethod(LinearMethodBase): | ||
"""Linear method for GPTQ. | ||
Args: | ||
quant_config: The GPTQ quantization config. | ||
""" | ||
|
||
def __init__(self, quant_config: GPTQHPUConfig): | ||
self.quant_config = quant_config | ||
|
||
def create_weights( | ||
self, | ||
layer: torch.nn.Module, | ||
input_size_per_partition: int, | ||
output_partition_sizes: List[int], | ||
input_size: int, | ||
output_size: int, | ||
params_dtype: torch.dtype, | ||
**extra_weight_attrs, | ||
): | ||
del output_size # Unused. | ||
weight_loader = extra_weight_attrs.get("weight_loader") | ||
if input_size_per_partition % self.quant_config.group_size != 0: | ||
raise ValueError( | ||
"The input size is not aligned with the quantized " | ||
"weight shape. This can be caused by too large " | ||
"tensor parallel size.") | ||
output_size_per_partition = sum(output_partition_sizes) | ||
if (output_size_per_partition % self.quant_config.pack_factor.numerator | ||
!= 0): | ||
raise ValueError( | ||
"The output size is not aligned with the quantized " | ||
"weight shape. This can be caused by too large " | ||
"tensor parallel size.") | ||
|
||
if self.quant_config.group_size != -1: | ||
group_size = self.quant_config.group_size | ||
else: | ||
group_size = input_size | ||
scale_and_zero_size = input_size // group_size | ||
scale_and_zero_input_dim = None | ||
|
||
qweight = PackedvLLMParameter( | ||
data=torch.empty( | ||
input_size_per_partition // self.quant_config.pack_factor, | ||
output_size_per_partition, | ||
dtype=torch.int32, | ||
), | ||
input_dim=0, | ||
output_dim=1, | ||
packed_dim=0, | ||
packed_factor=self.quant_config.pack_factor, | ||
weight_loader=weight_loader) | ||
|
||
g_idx = RowvLLMParameter(data=torch.tensor( | ||
[ | ||
i // self.quant_config.group_size | ||
for i in range(input_size_per_partition) | ||
], | ||
dtype=torch.int32, | ||
), | ||
input_dim=0, | ||
weight_loader=weight_loader) | ||
qzeros_args = { | ||
"data": | ||
torch.empty( | ||
scale_and_zero_size, | ||
output_size_per_partition // self.quant_config.pack_factor, | ||
dtype=torch.int32, | ||
), | ||
"weight_loader": | ||
weight_loader | ||
} | ||
weight_scale_args = { | ||
"data": | ||
torch.empty( | ||
scale_and_zero_size, | ||
output_size_per_partition, | ||
dtype=params_dtype, | ||
), | ||
"weight_loader": | ||
weight_loader | ||
} | ||
if scale_and_zero_input_dim is None: | ||
scales = ChannelQuantScaleParameter(output_dim=1, | ||
**weight_scale_args) | ||
qzeros = PackedColumnParameter( | ||
output_dim=1, | ||
packed_dim=1, | ||
packed_factor=self.quant_config.pack_factor, | ||
**qzeros_args) | ||
|
||
else: | ||
scales = GroupQuantScaleParameter(output_dim=1, | ||
input_dim=0, | ||
**weight_scale_args) | ||
qzeros = PackedvLLMParameter( | ||
input_dim=0, | ||
output_dim=1, | ||
packed_dim=1, | ||
packed_factor=self.quant_config.pack_factor, | ||
**qzeros_args) | ||
|
||
layer.register_parameter("qweight", qweight) | ||
layer.register_parameter("g_idx", g_idx) | ||
layer.register_parameter("qzeros", qzeros) | ||
layer.register_parameter("scales", scales) | ||
|
||
|
||
def process_weights_after_loading(self, layer: torch.nn.Module) -> None: | ||
|
||
self.wf = torch.tensor(list(range(0, 32, self.quant_config.weight_bits)), dtype=torch.int32).unsqueeze(0) | ||
weight = self.unpack_weight_from_cuda_old_format(layer) | ||
layer.qweight.data = self.pack_tensor(weight).to('hpu') | ||
|
||
zeros = self.unpack_zeros_from_cuda_old_format(layer).cpu() | ||
layer.qzeros.data = self.pack_tensor(zeros).to('hpu') | ||
|
||
|
||
# TODO: Support group indexing and remove the check | ||
columns = layer.qweight.shape[0] | ||
if self.quant_config.group_size > 0: | ||
g_idx_trivial = [i // self.quant_config.group_size for i in range(columns)] | ||
else: | ||
g_idx_trivial = [0] * columns | ||
g_idx_trivial = torch.tensor(g_idx_trivial, dtype=torch.int32) | ||
assert torch.equal(layer.g_idx, g_idx_trivial), "Non-trivial tensor g_idx is not supported" | ||
|
||
# for torch.compile | ||
layer.qweight = Parameter(layer.qweight.data, requires_grad=False) | ||
layer.qzeros = Parameter(layer.qzeros.data, requires_grad=False) | ||
layer.g_idx = Parameter(layer.g_idx.data, requires_grad=False) | ||
layer.scales = Parameter(layer.scales.data, requires_grad=False) | ||
|
||
|
||
def apply(self, | ||
layer: torch.nn.Module, | ||
x: torch.Tensor, | ||
bias: Optional[torch.Tensor] = None) -> torch.Tensor: | ||
|
||
out_shape = x.shape[:-1] | ||
if hasattr(layer, 'output_size_per_partition'): | ||
out_shape += (layer.output_size_per_partition , ) | ||
else: | ||
out_shape += (layer.output_size , ) | ||
|
||
reshaped_x = x.reshape(-1, x.shape[-1]) | ||
|
||
weight = torch.ops.hpu.convert_from_uint4(layer.qweight, | ||
layer.scales, | ||
layer.qzeros, | ||
x.dtype) | ||
output = torch.matmul(reshaped_x, weight) | ||
|
||
if bias is not None: | ||
output.add_(bias) | ||
return output.reshape(out_shape) | ||
|
||
|
||
def pack_tensor(self, input, bits = 4): | ||
normal = input.to(torch.int32) | ||
q = torch.sum(torch.bitwise_left_shift( | ||
normal.reshape(normal.shape[0], -1, (32 // bits)), | ||
self.wf.unsqueeze(0)), dim=-1 | ||
).to(torch.int32) | ||
|
||
return q | ||
|
||
def unpack_zeros_from_cuda_old_format(self, layer): | ||
|
||
bits = self.quant_config.weight_bits | ||
zeros = torch.bitwise_right_shift( | ||
torch.unsqueeze(layer.qzeros.to('cpu'), 2).expand(-1, -1, 32 // bits), | ||
self.wf.unsqueeze(0), | ||
).to(torch.int16 if bits == 8 else torch.int8) | ||
|
||
zeros = zeros + 1 | ||
zeros = torch.bitwise_and( | ||
zeros, (2**bits) - 1 | ||
).to(layer.scales.dtype) # NOTE: It appears that casting here after the `zeros = zeros + 1` is important. | ||
zeros = zeros.reshape(-1, zeros.shape[1] * zeros.shape[2]) | ||
return zeros | ||
|
||
def unpack_weight_from_cuda_old_format(self, layer): | ||
|
||
qweight = layer.qweight.cpu() | ||
bits = self.quant_config.weight_bits | ||
|
||
weight = torch.bitwise_right_shift( | ||
torch.unsqueeze(qweight, 1).expand(-1, 32 // bits, -1), | ||
self.wf.unsqueeze(-1), | ||
).to(torch.int16 if bits == 8 else torch.int8) | ||
weight = torch.bitwise_and(weight, (2**bits) - 1) | ||
weight = weight.reshape((weight.shape[0]*weight.shape[1], weight.shape[2])) | ||
return weight |