This repository contains the implementation of the paper.
If you find our work useful, Please give us a star 🌟!
LiCROcc: Teach Radar for Accurate Semantic Occupancy Prediction using LiDAR and Camera
Yukai Ma1,2, Jianbiao Mei1,2, Xuemeng Yang2, Licheng Wen2, Weihua Xu1, Jiangning Zhang1, Xingxing Zuo3, Botian Shi2,^, Yong Liu1,^
1ZJU 2PJLab3TUM
^Corresponding Authors
🎉 [2024/11/06] LiCROcc was accepted by RAL!!!
# Create a conda virtual environment and activate it.
conda create -n licrocc python=3.8 -y
conda activate licrocc
# Install torch
pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f ttps://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
# Install mmdet3d
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
git checkout v0.17.1 # Other versions may not be compatible.
pip install -v -e .
#
cd ../projects
pip install -v -e .
-Please refer to OpenOccupancy to prepare nuScenes dataset.
- Please refer to CRN to generate radar point cloud in BEV view.
python scripts/gen_radar_bev.py # accumulate sweeps and transform to LiDAR coords
Folder structure:
LiCROcc
├── data/
│ ├── nuscenes/
│ │ ├── maps/
│ │ ├── samples/
│ │ ├── sweeps/
│ │ ├── lidarseg/
│ │ ├── v1.0-test/
│ │ ├── v1.0-trainval/
│ │ ├── nuscenes_occ_infos_train.pkl
│ │ ├── nuscenes_occ_infos_val.pkl
│ │ ├── radar_bev_filter/
│ ├── nuScenes-Occupancy/
│ ├── depth_gt/
Download Teacher model here
Train RC-LiCROcc
./tools/dist_train.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2LR123.py N_GPUs
Train R-LiCROcc
./tools/dist_train.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2radar12.py N_GPUs
If an error is reported during training:
TypeError: FormatCode() got an unexpected keyword argument 'verify'
Simply remove ‘verify=True’
Eval RC-LiCROcc
./tools/dist_test.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2LR123.py ./path/to/ckpts.pth N_GPUs
Eval R-LiCROcc
./tools/dist_test.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2radar12.py ./path/to/ckpts.pth N_GPUs
Visualization
Temporarily only support saving occupancy predictions (refer to MonoScene for visualization tools)
./tools/dist_test.sh $PATH_TO_CFG $PATH_TO_CKPT $GPU_NUM --show --show-dir $PATH
Subset | Checkpoint | Logs | Note |
---|---|---|---|
RC-LiCROcc | link | link | train on 8 A100 |
R-LiCROcc | link | link | train on 8 A100 |
@ARTICLE{10777549,
author={Ma, Yukai and Mei, Jianbiao and Yang, Xuemeng and Wen, Licheng and Xu, Weihua and Zhang, Jiangning and Zuo, Xingxing and Shi, Botian and Liu, Yong},
journal={IEEE Robotics and Automation Letters},
title={LiCROcc: Teach Radar for Accurate Semantic Occupancy Prediction Using LiDAR and Camera},
year={2025},
volume={10},
number={1},
pages={852-859},
keywords={Radar;Semantics;Radar imaging;Three-dimensional displays;Laser radar;Feature extraction;Cameras;Sensors;Meteorology;Point cloud compression;Sensor fusion;semantic scene completion;knowledge distillation},
doi={10.1109/LRA.2024.3511427}}
We adopt the following open-sourced projects: