Skip to content

HR-zju/LiCROcc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LiCROcc

arXiv web star

This repository contains the implementation of the paper.

If you find our work useful, Please give us a star 🌟!

LiCROcc: Teach Radar for Accurate Semantic Occupancy Prediction using LiDAR and Camera
Yukai Ma1,2, Jianbiao Mei1,2, Xuemeng Yang2, Licheng Wen2, Weihua Xu1, Jiangning Zhang1, Xingxing Zuo3, Botian Shi2,^, Yong Liu1,^
1ZJU 2PJLab3TUM
^Corresponding Authors

News

🎉 [2024/11/06] LiCROcc was accepted by RAL!!!

Getting Started

Installation

# Create a conda virtual environment and activate it.
conda create -n licrocc python=3.8 -y
conda activate licrocc
# Install torch
pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f ttps://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
# Install mmdet3d
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
git checkout v0.17.1 # Other versions may not be compatible.
pip install -v -e .
# 
cd ../projects
pip install -v -e .

Prepare Dataset

-Please refer to OpenOccupancy to prepare nuScenes dataset.

  • Please refer to CRN to generate radar point cloud in BEV view.
python scripts/gen_radar_bev.py  # accumulate sweeps and transform to LiDAR coords

Folder structure:

LiCROcc
├── data/
│   ├── nuscenes/
│   │   ├── maps/
│   │   ├── samples/
│   │   ├── sweeps/
│   │   ├── lidarseg/
│   │   ├── v1.0-test/
│   │   ├── v1.0-trainval/
│   │   ├── nuscenes_occ_infos_train.pkl
│   │   ├── nuscenes_occ_infos_val.pkl
│   │   ├── radar_bev_filter/
│   ├── nuScenes-Occupancy/
│   ├── depth_gt/

Run and Eval

Download Teacher model here

Train RC-LiCROcc

./tools/dist_train.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2LR123.py N_GPUs

Train R-LiCROcc

./tools/dist_train.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2radar12.py N_GPUs

If an error is reported during training:

TypeError: FormatCode() got an unexpected keyword argument 'verify'

Simply remove ‘verify=True’

Eval RC-LiCROcc

./tools/dist_test.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2LR123.py ./path/to/ckpts.pth N_GPUs

Eval R-LiCROcc

./tools/dist_test.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2radar12.py ./path/to/ckpts.pth N_GPUs

Visualization

Temporarily only support saving occupancy predictions (refer to MonoScene for visualization tools)

./tools/dist_test.sh $PATH_TO_CFG $PATH_TO_CKPT $GPU_NUM --show --show-dir $PATH

Model Zoo

Subset Checkpoint Logs Note
RC-LiCROcc link link train on 8 A100
R-LiCROcc link link train on 8 A100

Cite Us

@ARTICLE{10777549,
  author={Ma, Yukai and Mei, Jianbiao and Yang, Xuemeng and Wen, Licheng and Xu, Weihua and Zhang, Jiangning and Zuo, Xingxing and Shi, Botian and Liu, Yong},
  journal={IEEE Robotics and Automation Letters}, 
  title={LiCROcc: Teach Radar for Accurate Semantic Occupancy Prediction Using LiDAR and Camera}, 
  year={2025},
  volume={10},
  number={1},
  pages={852-859},
  keywords={Radar;Semantics;Radar imaging;Three-dimensional displays;Laser radar;Feature extraction;Cameras;Sensors;Meteorology;Point cloud compression;Sensor fusion;semantic scene completion;knowledge distillation},
  doi={10.1109/LRA.2024.3511427}}

Credit

We adopt the following open-sourced projects:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published