Skip to content

Repo for INT3305E Fall 2023 course's project in Predicting Movie genres from poster, title and user rating data.

Notifications You must be signed in to change notification settings

HHHMGK/ML-project

Repository files navigation

ML-project

Repo for Machine learning course INT3305E, Fall 2023 project in Predicting Movie genres from Title, Poster and User rating data.

Project structure

├── dataset
    code to visualize and preprocessing data
├── model
    main models implementation
    ├── saved_models
        contains trained models
├── utils
    utility functions
main.py : main file to run the project
model_config.yaml : config file for models

Installation

pip install -r requirements.txt

Usage

  1. Arguments parsing

    To select the models to be used and other training hyperparameters, parsing arguments to main.py. Use

    python main.py --help

    to print the list of arguments and their default values and descriptions.

    To change models hyperparameters, edit model_config.yaml file.

  2. Training

    To train the models, use

    python main.py train --title_model <titleModelName> --poster_model <posterModelName> --urating <userRatingsModelName> --checkpoint <checkpointFileName>

    For example, for training the top score model, use

    python main.py train --title_model LSTM --poster_model DenseNet169  --urating_model FNN --use_dropped_data False --batch_size 32  --image_size 256 --max_epochs 20 --checkpoint lstm_den169_fnn_nodrop
  3. Testing

    To test the models, use

    python main.py test --title_model <titleModelName> --poster_model <posterModelName> --urating <userRatingsModelName> --checkpoint <checkpointFileName>

    For example, for testing the top score model, use

    python main.py test --title_model LSTM --poster_model DenseNet169  --urating_model FNN --use_dropped_data False --batch_size 32  --image_size 256 --max_epochs 20 --checkpoint lstm_den169_fnn_nodrop

test and train can be replaced with train_test for automatic testing after training

Notebook file for training and testing models: [ml-project.ipynb]

About

Repo for INT3305E Fall 2023 course's project in Predicting Movie genres from poster, title and user rating data.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published