Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix typo in tsp.ipynb #46

Merged
merged 1 commit into from
Jan 2, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion traveling_salesman/tsp.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
"\n",
"In the early 1970s, the concept of P vs. NP problems created excitement in the theoretical computer science community. In 1972, Richard Karp demonstrated that the Hamiltonian cycle problem was NP-complete, implying that the traveling salesman problem was NP-hard.\n",
"\n",
"Increasingly sophisticated codes led to rapid increases in the sizes of the traveling salesman problems solved. Dantzig, Fulkerson, and Johnson had solved a 48-city instance of the problem in 1954. Martin Grötechel more than doubled this 23 years later, solving a 120-city instance in 1977. Harlan Crowder and Manfred W. Padberg again more than doubled this in just 3 years, with a 318-city solution.\n",
"Increasingly sophisticated codes led to rapid increases in the sizes of the traveling salesman problems solved. Dantzig, Fulkerson, and Johnson had solved a 48-city instance of the problem in 1954. Martin Grötschel more than doubled this 23 years later, solving a 120-city instance in 1977. Harlan Crowder and Manfred W. Padberg again more than doubled this in just 3 years, with a 318-city solution.\n",
"\n",
"In 1987, rapid improvements were made, culminating in a 2,392-city solution by Padberg and Giovanni Rinaldi. In the following two decades, great strides were made with David L. Applegate, Robert E. Bixby, Vasek Chvátal, & William J. Cook solving a 3,308-city instance in 1992, a 7,397-city instance in 1994, a 24,978-city instance in 2004, and an 85,900-city instance in 2006 – which is the largest 2-D Euclidean TSP instance ever solved. William Cook et. al. wrote a program called Concorde TSP Solver for solving the TSP [4]. Concorde is a computer code for the symmetric TSP and some related network optimization problems. The code is written in the ANSI C programming language and it has been used to obtain the optimal solutions to the full set of 110 TSPLIB instances, the largest instance is a 109,399 node 3-D “star” instance.\n",
"\n",
Expand Down
Loading