Skip to content

GuoxingY/ms-tcn

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation

This repository provides a PyTorch implementation of the paper MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation.

Tested with:

  • PyTorch 0.4.1
  • Python 2.7.12

Qualitative Results:

IMAGE ALT TEXT

Training:

  • Download the data folder, which contains the features and the ground truth labels. (~30GB)
  • Extract it so that you have the data folder in the same directory as main.py.
  • To train the model run python main.py --action=train --dataset=DS --split=SP where DS is breakfast, 50salads or gtea, and SP is the split number (1-5) for 50salads and (1-4) for the other datasets.

Prediction:

Run python main.py --action=predict --dataset=DS --split=SP.

Evaluation:

Run python eval.py --dataset=DS --split=SP.

Citation:

If you use the code, please cite

Y. Abu Farha and J. Gall.
MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%