Skip to content

Latest commit

 

History

History
338 lines (254 loc) · 22.1 KB

README.md

File metadata and controls

338 lines (254 loc) · 22.1 KB

Run on AIstudio

English | 简体中文

This YOLOv5-Paddle 🚀 notebook by GuoQuanhao presents simple train, validate and predict and export examples. YOLOv5-Paddle now supports conversion of single-precision and half-precision models in multiple formats. Contact me at github for professional support.

PaddleLitePaddleInferenceONNXOpenVIVOTensorRT

Detection

Install

Clone repo and install requirements.txt in a Python>=3.7.0 environment, including PaddlePaddle>=2.4.0.

git clone https://github.com/GuoQuanhao/yolov5-Paddle  # clone
cd yolov5-Paddle
pip install -r requirements.txt  # install
Training

The commands below reproduce YOLOv5 COCO results. Models and datasets download automatically from the latest YOLOv5 release. Batch sizes shown for V100-16GB

# (from scratch)Single-GPU or CPU
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml  --batch-size 128  --device ''
                                                                 yolov5s                    64            cpu
                                                                 yolov5m                    40            0
                                                                 yolov5l                    24            1
                                                                 yolov5x                    16            2
															 
# (pretrained)Single-GPU or CPU
python train.py --data coco.yaml --epochs 300 --weights yolov5n.pdparams --batch-size 128  --device ''
                                                        yolov5s                       64            cpu
                                                        yolov5m                       40            0
                                                        yolov5l                       24            1
                                                        yolov5x                       16            2
# Multi-GPU, from scratch and pretrained as above
python -m paddle.distributed.launch --gpus 0,1,2,3 train.py --weights '' --cfg yolov5n.yaml --batch-size 128  --data coco.yaml --epochs 300 --device 0,1,2,3
                                                                                 yolov5s                    64
                                                                                 yolov5m                    40
                                                                                 yolov5l                    24
                                                                                 yolov5x                    16
Evaluation

The commands below reproduce YOLOv5 COCO results. Models and datasets download automatically from the latest YOLOv5 release. Batch sizes shown for V100-16GB

# (from scratch)Single-GPU or CPU
python val.py --data coco.yaml --weights yolov5n.pdparams --img 640 --conf 0.001 --iou 0.65 --device ''
                                         yolov5s                                                     cpu
                                         yolov5m                                                     0
                                         yolov5l                                                     1
                                         yolov5x                                                     2
Inference

YOLOv5 PaddlePaddle inference. Models download automatically from the latest

# Model
python hubconf.py  # or yolov5n - yolov5x6, custom

detect.py runs inference on a variety of sources, downloading models automatically from the Baidu Drive and saving results to runs/detect.

python detect.py --weights yolov5s.pdparams --source 0                         # webcam
                                               img.jpg                         # image
                                               vid.mp4                         # video
                                               screen                          # screenshot
                                               path/                           # directory
                                               list.txt                        # list of images
                                               list.streams                    # list of streams
                                               'path/*.jpg'                    # glob
                                               'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                                               'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
benchmark
python benchmarks.py --weights ./yolov5s.pdparams --device 0
Benchmarks complete (187.81s)
            Format  Size (MB)  mAP50-95  Inference time (ms)
0     PaddlePaddle       13.9    0.4716                 9.75
1  PaddleInference       27.8    0.4716                20.82
2             ONNX       27.6    0.4717                32.23
3         TensorRT       32.2    0.4717                 3.05
4         OpenVINO       27.9    0.4717                43.67
5       PaddleLite       27.8    0.4717               264.86
YOLOv5 and YOLOv5-P5 640 Figure

Figure Notes
  • COCO AP val denotes [email protected]:0.95 metric measured on the 5000-image COCO val2017 dataset over various inference sizes from 256 to 1536.
  • GPU Speed measures average inference time per image on COCO val2017 dataset using a AWS p3.2xlarge V100 instance at batch-size 32.
  • Reproduce by python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pdparams yolov5s6.pdparams yolov5m6.pdparams yolov5l6.pdparams yolov5x6.pdparams
Detection Checkpoints

Accuracy, params and flops verificated by PaddlePaddle, speed is from original YOLOv5

Model size
(pixels)
mAPval
50-95
mAPval
50
Speed
CPU b1
(ms)
Speed
V100 b1
(ms)
Speed
V100 b32
(ms)
params
(M)
FLOPs
@640 (B)
YOLOv5n 640 28.0 45.7 45 6.3 0.6 1.9 4.5
YOLOv5s 640 37.4 56.8 98 6.4 0.9 7.2 16.5
YOLOv5m 640 45.3 64.1 224 8.2 1.7 21.2 49.0
YOLOv5l 640 49.0 67.4 430 10.1 2.7 46.5 109.1
YOLOv5x 640 50.6 68.8 766 12.1 4.8 86.7 205.7
YOLOv5n6 1280 36.0 54.4 153 8.1 2.1 3.2 4.6
YOLOv5s6 1280 44.8 63.7 385 8.2 3.6 12.6 16.8
YOLOv5m6 1280 51.3 69.3 887 11.1 6.8 35.7 50.0
YOLOv5l6 1280 53.7 71.3 1784 15.8 10.5 76.8 111.4
YOLOv5x6
+ [TTA]
1280
1536
55.0
55.8
72.7
72.7
3136
-
26.2
-
19.4
-
140.7
-
209.8
-
Table Notes
  • All checkpoints are trained to 300 epochs with default settings. Nano and Small models use hyp.scratch-low.yaml hyps, all others use hyp.scratch-high.yaml.
  • mAPval values are for single-model single-scale on COCO val2017 dataset.
    Reproduce by python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
  • Speed averaged over COCO val images using a AWS p3.2xlarge instance. NMS times (~1 ms/img) not included.
    Reproduce by python val.py --data coco.yaml --img 640 --task speed --batch 1
  • TTA Test Time Augmentation includes reflection and scale augmentations.
    Reproduce by python val.py --data coco.yaml --img 1536 --iou 0.7 --augment
Export
python export.py --weights yolov5n.pdparams --include paddleinfer onnx engine openvino paddlelite
						   yolov5s.pdparams
						   yolov5m.pdparams
						   yolov5l.pdparams
						   yolov5x.pdparams

You can use --dynamic or --half to get dynamic dimension or half-precision model.

Segmentation

Segmentation Checkpoints
Model size
(pixels)
mAPbox
50-95
mAPmask
50-95
Train time
300 epochs
A100 (hours)
Speed
ONNX CPU
(ms)
Speed
TRT A100
(ms)
params
(M)
FLOPs
@640 (B)
YOLOv5n-seg 640 27.2 23.5 80:17 62.7 1.2 2.0 7.1
YOLOv5s-seg 640 37.3 31.8 88:16 173.3 1.4 7.6 26.4
YOLOv5m-seg 640 44.7 37.5 108:36 427.0 2.2 22.0 70.8
YOLOv5l-seg 640 48.7 40.3 66:43 (2x) 857.4 2.9 47.9 147.7
YOLOv5x-seg 640 50.7 41.4 62:56 (3x) 1579.2 4.5 88.8 265.7
  • All checkpoints are trained to 300 epochs with SGD optimizer with lr0=0.01 and weight_decay=5e-5 at image size 640 and all default settings.
  • Accuracy values are for single-model single-scale on COCO dataset.
    Reproduce by python segment/val.py --data coco.yaml --weights yolov5s-seg.pdparams
  • Speed averaged over 100 inference images using a Colab Pro A100 High-RAM instance. Values indicate inference speed only (NMS adds about 1ms per image).
    Reproduce by python segment/val.py --data coco.yaml --weights yolov5s-seg.pdparams --batch 1
  • Export to ONNX at FP32 and TensorRT at FP16 done with export.py.
    Reproduce by python export.py --weights yolov5s-seg.pdparams --include engine --device 0 --half
Segmentation Usage Examples

Train

YOLOv5 segmentation training supports auto-download COCO128-seg segmentation dataset with --data coco128-seg.yaml argument and manual download of COCO-segments dataset with bash data/scripts/get_coco.sh --train --val --segments and then python train.py --data coco.yaml.

# Single-GPU
python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pdparams --img 640

# Multi-GPU DDP
python -m paddle.distributed.launch --gpus 0,1,2,3 segment/train.py --weights yolov5s-seg.pdparams --data coco128-seg.yaml --device 0,1,2,3

Val

Validate YOLOv5s-seg mask mAP on COCO dataset:

bash data/scripts/get_coco.sh --val --segments  # download COCO val segments split (780MB, 5000 images)
python segment/val.py --weights yolov5s-seg.pdparams --data coco.yaml --img 640  # validate

Predict

Use pretrained YOLOv5m-seg.pdparams to predict bus.jpg:

python segment/predict.py --weights yolov5m-seg.pdparams --data data/images/bus.jpg
zidane bus

Export

Export YOLOv5s-seg model to ONNX, TensorRT, etc.

# export model
python export.py --weights yolov5s-seg.pdparams --include paddleinfer onnx engine openvino paddlelite --img 640 --device 0

# Inference
python detect.py --weights yolov5s.pdparams           # PaddlePaddle
						   yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
						   yolov5s_openvino_model     # OpenVINO
						   yolov5s.engine             # TensorRT
						   yolov5s_paddle_model       # PaddleInference
						   yolov5s.nb                 # PaddleLite

Classification

YOLOv5 brings support for classification model training, validation and deployment!

Classification Checkpoints

We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google Colab Pro for easy reproducibility.

Model size
(pixels)
acc
top1
acc
top5
Training
90 epochs
4xA100 (hours)
Speed
ONNX CPU
(ms)
Speed
TensorRT V100
(ms)
params
(M)
FLOPs
@224 (B)
YOLOv5n-cls 224 64.6 85.4 7:59 3.3 0.5 2.5 0.5
YOLOv5s-cls 224 71.5 90.2 8:09 6.6 0.6 5.4 1.4
YOLOv5m-cls 224 75.9 92.9 10:06 15.5 0.9 12.9 3.9
YOLOv5l-cls 224 78.0 94.0 11:56 26.9 1.4 26.5 8.5
YOLOv5x-cls 224 79.0 94.5 15:04 54.3 1.8 48.1 15.9
Table Notes (click to expand)
  • All checkpoints are trained to 90 epochs with SGD optimizer with lr0=0.001 and weight_decay=5e-5 at image size 224 and all default settings.
    Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
  • Accuracy values are for single-model single-scale on ImageNet-1k dataset.
    Reproduce by python classify/val.py --data ../datasets/imagenet --img 224
  • Speed averaged over 100 inference images using a Google Colab Pro V100 High-RAM instance.
    Reproduce by python classify/val.py --data ../datasets/imagenet --img 224 --batch 1
  • Export to ONNX at FP32 and TensorRT at FP16 done with export.py.
    Reproduce by python export.py --weights yolov5s-cls.pdparams --include engine onnx --imgsz 224
Classification Usage Examples

Train

YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the --data argument. To start training on MNIST for example use --data mnist.

# Single-GPU
python classify/train.py --model yolov5s-cls.pdparams --data cifar100 --img 224 --batch 128

# Multi-GPU DDP
python -m paddle.distributed.launch --gpus 0,1,2,3  classify/train.py --model yolov5s-cls.pdparams --data imagenet --img 224 --device 0,1,2,3

Val

Validate YOLOv5m-cls accuracy on ImageNet-1k dataset:

bash data/scripts/get_imagenet.sh --val  # download ImageNet val split (6.3G, 50000 images)
python classify/val.py --weights yolov5m-cls.pdparams --data ../datasets/imagenet --img 224  # validate

Predict

Use pretrained YOLOv5s-cls.pdparams to predict bus.jpg:

python classify/predict.py --weights yolov5s-cls.pdparams --data data/images/bus.jpg

Export

Export a group of trained YOLOv5s-cls, ResNet models to ONNX and TensorRT:

python export.py --weights yolov5s-cls.pdparams resnet50.pdparams --include paddleinfer, onnx, engine, openvino, paddlelite --img 224