Skip to content

Gqingkun/DGDTA

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DGDTA

Dynamic graph attention network for predicting drug-target binding affinity. It is built with *Pytorch and Python 3.

Installation

Requirements

  • python 3.9, numpy, scipy, pandas, pytorch, pyg

1. Create a virtual environment

# create
conda create -n DGDTA python=3.9
# activate
conda activate DGDTA
# deactivate
conda deactivate

2. clone DGDTA

  • After creating and activating the DGDTA virtual environment, download DGDTA from github:
git clone https://github.com/luojunwei/DGDTA.git
cd DGDTA

3. Install

conda activate DGDTA
conda install numpy, scipy, pandas, Pytorch, pyg

Tested data

The example data can be downloaded from

Davis and KIBA

https://github.com/thinng/GraphDTA/tree/master/data

Usage

Train Model

1. Create Dataset

python data_creation.py

First, divide the data into training and test sets and create data files in pytorch format.

2. Train model

Run the following script to train the model.

python training2.py

The default values of the parameter parser are the DGDTA-CL version and the KIBA dataset.

3. Validate the training prediction model

Run the following script to test the model.

python training_validation.py 

This returns the best MSE model for the validation dataset during the training process.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%