-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
699080d
commit 71048c1
Showing
9 changed files
with
65 additions
and
121 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -61,75 +61,42 @@ GenET was developed for anyone interested in the field of genome editing. Especi | |
|
||
## Example: Prediction of prime editing efficiency by DeepPrime | ||
![](docs/en/assets/contents/en_1_4_1_DeepPrime_architecture.svg) | ||
DeepPrime is a prediction model for evaluating prime editing guideRNAs (pegRNAs) that target specific target sites for prime editing ([Yu et al. Cell 2023](https://doi.org/10.1016/j.cell.2023.03.034)). DeepSpCas9 prediction score is calculated simultaneously and requires tensorflow (version >=2.6). DeepPrime was developed on pytorch. | ||
DeepPrime is a prediction model for evaluating prime editing guideRNAs (pegRNAs) that target specific target sites for prime editing ([Yu et al. Cell 2023](https://doi.org/10.1016/j.cell.2023.03.034)). DeepSpCas9 prediction score is calculated simultaneously and requires tensorflow (version >=2.6). DeepPrime was developed on pytorch. For more details, please see the [documentation](https://goosang-yu.github.io/genet/). | ||
|
||
```python | ||
from genet.predict import DeepPrime | ||
|
||
seq_wt = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT' | ||
seq_ed = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT' | ||
|
||
pegrna = DeepPrime('Test', seq_wt, seq_ed, edit_type='sub', edit_len=1) | ||
pegrna = DeepPrime('SampleName', seq_wt, seq_ed, edit_type='sub', edit_len=1) | ||
|
||
# check designed pegRNAs | ||
>>> pegrna.features | ||
>>> pegrna.features.head() | ||
``` | ||
|
||
| | ID | WT74_On | Edited74_On | PBSlen | RTlen | RT-PBSlen | Edit_pos | Edit_len | RHA_len | type_sub | type_ins | type_del | Tm1 | Tm2 | Tm2new | Tm3 | Tm4 | TmD | nGCcnt1 | nGCcnt2 | nGCcnt3 | fGCcont1 | fGCcont2 | fGCcont3 | MFE3 | MFE4 | DeepSpCas9_score | | ||
| - | ---- | -------------------------------------------------------------------------- | -------------------------------------------------------------------------- | ------ | ----- | --------- | -------- | -------- | ------- | -------- | -------- | -------- | -------- | ------- | ------- | --------- | -------- | --------- | ------- | ------- | ------- | -------- | -------- | -------- | ------ | ----- | ---------------- | | ||
| 0 | Test | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG | xxxxxxxxxxxxxxCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx | 7 | 35 | 42 | 34 | 1 | 1 | 1 | 0 | 0 | 16.19097 | 62.1654 | 62.1654 | \-277.939 | 58.22525 | \-340.105 | 5 | 16 | 21 | 71.42857 | 45.71429 | 50 | \-10.4 | \-0.6 | 45.96754 | | ||
| 1 | Test | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG | xxxxxxxxxxxxxCCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx | 8 | 35 | 43 | 34 | 1 | 1 | 1 | 0 | 0 | 30.19954 | 62.1654 | 62.1654 | \-277.939 | 58.22525 | \-340.105 | 6 | 16 | 22 | 75 | 45.71429 | 51.16279 | \-10.4 | \-0.6 | 45.96754 | | ||
| 2 | Test | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG | xxxxxxxxxxxxACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx | 9 | 35 | 44 | 34 | 1 | 1 | 1 | 0 | 0 | 33.78395 | 62.1654 | 62.1654 | \-277.939 | 58.22525 | \-340.105 | 6 | 16 | 22 | 66.66667 | 45.71429 | 50 | \-10.4 | \-0.6 | 45.96754 | | ||
| 3 | Test | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG | xxxxxxxxxxxCACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx | 10 | 35 | 45 | 34 | 1 | 1 | 1 | 0 | 0 | 38.51415 | 62.1654 | 62.1654 | \-277.939 | 58.22525 | \-340.105 | 7 | 16 | 23 | 70 | 45.71429 | 51.11111 | \-10.4 | \-0.6 | 45.96754 | | ||
| 4 | Test | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG | xxxxxxxxxxACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx | 11 | 35 | 46 | 34 | 1 | 1 | 1 | 0 | 0 | 40.87411 | 62.1654 | 62.1654 | \-277.939 | 58.22525 | \-340.105 | 7 | 16 | 23 | 63.63636 | 45.71429 | 50 | \-10.4 | \-0.6 | 45.96754 | | ||
| 5 | Test | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATG | xxxxxxxxxAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGxxxxxxxxxxxxxxxxxx | 12 | 35 | 47 | 34 | 1 | 1 | 1 | 0 | 0 | 40.07098 | 62.1654 | 62.1654 | \-277.939 | 58.22525 | \-340.105 | 7 | 16 | 23 | 58.33333 | 45.71429 | 48.93617 | \-10.4 | \-0.6 | 45.96754 | | ||
| | ID | Spacer | RT-PBS | PBS_len | RTT_len | RT-PBS_len | Edit_pos | Edit_len | RHA_len | Target | ... | deltaTm_Tm4-Tm2 | GC_count_PBS | GC_count_RTT | GC_count_RT-PBS | GC_contents_PBS | GC_contents_RTT | GC_contents_RT-PBS | MFE_RT-PBS-polyT | MFE_Spacer | DeepSpCas9_score | | ||
| --- | ---- | -------------------- | ------------------------------------------------- | ------- | ------- | ---------- | -------- | -------- | ------- | ------------------------------------------------- | --- | --------------- | ------------ | ------------ | --------------- | --------------- | --------------- | ------------------ | ---------------- | ---------- | ---------------- | | ||
| 0 | SampleName | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGG | 7 | 35 | 42 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ... | \-340.105 | 5 | 16 | 21 | 71.42857 | 45.71429 | 50 | \-10.4 | \-0.6 | 45.96754 | | ||
| 1 | SampleName | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGG | 8 | 35 | 43 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ... | \-340.105 | 6 | 16 | 22 | 75 | 45.71429 | 51.16279 | \-10.4 | \-0.6 | 45.96754 | | ||
| 2 | SampleName | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGT | 9 | 35 | 44 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ... | \-340.105 | 6 | 16 | 22 | 66.66667 | 45.71429 | 50 | \-10.4 | \-0.6 | 45.96754 | | ||
| 3 | SampleName | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTG | 10 | 35 | 45 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ... | \-340.105 | 7 | 16 | 23 | 70 | 45.71429 | 51.11111 | \-10.4 | \-0.6 | 45.96754 | | ||
| 4 | SampleName | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTGT | 11 | 35 | 46 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ... | \-340.105 | 7 | 16 | 23 | 63.63636 | 45.71429 | 50 | \-10.4 | \-0.6 | 45.96754 | | ||
|
||
|
||
Next, select model PE system and run DeepPrime | ||
```python | ||
pe2max_output = pegrna.predict(pe_system='PE2max', cell_type='HEK293T') | ||
|
||
>>> pe2max_output.head() | ||
``` | ||
| | Target | Spacer | RT-PBS | PBSlen | RTlen | RT-PBSlen | Edit_pos | Edit_len | RHA_len | PE2max_score | | ||
| - | ------------------------------------------------- | ------------------------------ | ---------------------------------------------- | ------ | ----- | --------- | -------- | -------- | ------- | ------------ | | ||
| 0 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGG | 7 | 35 | 42 | 34 | 1 | 1 | 0.904907 | | ||
| 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGG | 8 | 35 | 43 | 34 | 1 | 1 | 2.377118 | | ||
| 2 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGT | 9 | 35 | 44 | 34 | 1 | 1 | 2.613841 | | ||
| 3 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTG | 10 | 35 | 45 | 34 | 1 | 1 | 3.643573 | | ||
| 4 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTGT | 11 | 35 | 46 | 34 | 1 | 1 | 3.770234 | | ||
|
||
|
||
The previous function, ```pe_score()```, is still available for use. However, please note that this function will be deprecated in the near future. | ||
```python | ||
from genet import predict as prd | ||
|
||
# Place WT sequence and Edited sequence information, respectively. | ||
# And select the edit type you want to make and put it in. | ||
#Input seq: 60bp 5' context + 1bp center + 60bp 3' context (total 121bp) | ||
|
||
seq_wt = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGAAGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT' | ||
seq_ed = 'ATGACAATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGAAACTGAGACGAACTATAACCTGCAAATGTCAACTGAAACCTTAAAGTGAGTATTTAATTGAGCTGAAGT' | ||
alt_type = 'sub1' | ||
|
||
df_pe = prd.pe_score(seq_wt, seq_ed, alt_type) | ||
df_pe.head() | ||
``` | ||
| | Target | Spacer | RT-PBS | PBSlen | RTlen | RT-PBSlen | Edit_pos | Edit_len | RHA_len | PE2max_score | | ||
| - | ------------------------------------------------- | ------------------------------ | ---------------------------------------------- | ------ | ----- | --------- | -------- | -------- | ------- | ------------ | | ||
| 0 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGG | 7 | 35 | 42 | 34 | 1 | 1 | 0.904907 | | ||
| 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGG | 8 | 35 | 43 | 34 | 1 | 1 | 2.377118 | | ||
| 2 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGT | 9 | 35 | 44 | 34 | 1 | 1 | 2.613841 | | ||
| 3 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTG | 10 | 35 | 45 | 34 | 1 | 1 | 3.643573 | | ||
| 4 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | ATAAAAGACAACACCCTTGCCTTGTGGAGT | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTGT | 11 | 35 | 46 | 34 | 1 | 1 | 3.770234 | | ||
|
||
|
||
|
||
It is also possible to predict other cell lines (A549, DLD1...) and PE systems (PE2max, PE4max...). | ||
|
||
```python | ||
df_pe = prd.pe_score(seq_wt, seq_ed, alt_type, sID='MyGene', pe_system='PE4max', cell_type='A549') | ||
``` | ||
|
||
| | ID | PE2max_score | Spacer | RT-PBS | PBS_len | RTT_len | RT-PBS_len | Edit_pos | Edit_len | RHA_len | Target | | ||
| - | ---- | ------------ | -------------------- | ---------------------------------------------- | ------- | ------- | ---------- | -------- | -------- | ------- | ------------------------------------------------- | | ||
| 0 | SampleName | 0.904387 | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGG | 7 | 35 | 42 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | | ||
| 1 | SampleName | 2.375938 | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGG | 8 | 35 | 43 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | | ||
| 2 | SampleName | 2.61238 | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGT | 9 | 35 | 44 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | | ||
| 3 | SampleName | 3.641537 | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTG | 10 | 35 | 45 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | | ||
| 4 | SampleName | 3.768321 | AAGACAACACCCTTGCCTTG | CGTCTCAGTTTCTGGGAGCTTTGAAAACTCCACAAGGCAAGGGTGT | 11 | 35 | 46 | 34 | 1 | 1 | ATAAAAGACAACACCCTTGCCTTGTGGAGTTTTCAAAGCTCCCAGA... | | ||
|
||
|
||
Please send all comments and questions to [email protected] |
Oops, something went wrong.