Skip to content

Commit

Permalink
fix(unify-rasters): Fix unify raster grids copying dtype and other un…
Browse files Browse the repository at this point in the history
…wanted metadata from base raster
  • Loading branch information
nmaarnio committed Jun 3, 2024
1 parent 5c8d32e commit 5680031
Showing 1 changed file with 47 additions and 40 deletions.
87 changes: 47 additions & 40 deletions eis_toolkit/raster_processing/unifying.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,83 +4,90 @@
from beartype.typing import List, Literal, Sequence, Tuple
from rasterio import warp
from rasterio.enums import Resampling
from rasterio.profiles import Profile

from eis_toolkit.exceptions import InvalidParameterValueException
from eis_toolkit.raster_processing.resampling import RESAMPLE_METHOD_MAP


def _calculate_snapped_grid(
raster: rasterio.io.DatasetReader, dst_crs: rasterio.crs.CRS, dst_resolution: Tuple[float, float]
) -> Tuple[warp.Affine, int, int]:
dst_transform, dst_width, dst_height = warp.calculate_default_transform(
raster.crs, dst_crs, raster.width, raster.height, *raster.bounds, resolution=dst_resolution
)
# The created transform might not be aligned with the base raster grid, so
# we still need to snap/align the transformation to closest grid corner
x_distance_to_grid = dst_transform.c % dst_resolution[0]
y_distance_to_grid = dst_transform.f % dst_resolution[1]

if x_distance_to_grid > dst_resolution[0] / 2: # Snap towards right
c = dst_transform.c - x_distance_to_grid + dst_resolution[0]
else: # Snap towards left
c = dst_transform.c - x_distance_to_grid

if y_distance_to_grid > dst_resolution[1] / 2: # Snap towards up
f = dst_transform.f - y_distance_to_grid + dst_resolution[1]
else: # Snap towards bottom
f = dst_transform.f - y_distance_to_grid

# Create new transform with updated corner coordinates
dst_transform = warp.Affine(
dst_transform.a, # Pixel size x
dst_transform.b, # Shear parameter
c, # Up-left corner x-coordinate
dst_transform.d, # Shear parameter
dst_transform.e, # Pixel size y
f, # Up-left corner y-coordinate
)
return dst_transform, dst_width, dst_height


def _unify_raster_grids(
base_raster: rasterio.io.DatasetReader,
rasters_to_unify: Sequence[rasterio.io.DatasetReader],
resampling_method: Resampling,
same_extent: bool,
) -> List[Tuple[np.ndarray, dict]]:
) -> List[Tuple[np.ndarray, Profile]]:

dst_crs = base_raster.crs
dst_width = base_raster.width
dst_height = base_raster.height
dst_transform = base_raster.transform
dst_resolution = (base_raster.transform.a, abs(base_raster.transform.e))

out_rasters = [(base_raster.read(), base_raster.meta.copy())]
out_meta = base_raster.meta.copy()
out_rasters = [(base_raster.read(), base_raster.profile.copy())]

for raster in rasters_to_unify:
out_profile = raster.profile.copy()

# If we unify without clipping, things are more complicated and we need to
# calculate corner coordinates, width and height, and snap the grid to nearest corner
if not same_extent:
dst_transform, dst_width, dst_height = warp.calculate_default_transform(
raster.crs, dst_crs, raster.width, raster.height, *raster.bounds, resolution=dst_resolution
)
# The created transform might not be aligned with the base raster grid, so
# we still need to snap/align the transformation to closest grid corner
x_distance_to_grid = dst_transform.c % dst_resolution[0]
y_distance_to_grid = dst_transform.f % dst_resolution[1]

if x_distance_to_grid > dst_resolution[0] / 2: # Snap towards right
c = dst_transform.c - x_distance_to_grid + dst_resolution[0]
else: # Snap towards left
c = dst_transform.c - x_distance_to_grid

if y_distance_to_grid > dst_resolution[1] / 2: # Snap towards up
f = dst_transform.f - y_distance_to_grid + dst_resolution[1]
else: # Snap towards bottom
f = dst_transform.f - y_distance_to_grid

# Create new transform with updated corner coordinates
dst_transform = warp.Affine(
dst_transform.a, # Pixel size x
dst_transform.b, # Shear parameter
c, # Up-left corner x-coordinate
dst_transform.d, # Shear parameter
dst_transform.e, # Pixel size y
f, # Up-left corner y-coordinate
)

out_meta["transform"] = dst_transform
out_meta["width"] = dst_width
out_meta["height"] = dst_height
dst_transform, dst_width, dst_height = _calculate_snapped_grid(raster, dst_crs, dst_resolution)

# Initialize output raster arrary
dst_array = np.empty((base_raster.count, dst_height, dst_width))
dst_array.fill(base_raster.meta["nodata"])
nodata = out_profile["nodata"]
dst_array.fill(nodata)

src_array = raster.read()

out_image = warp.reproject(
source=src_array,
src_crs=raster.crs,
src_transform=raster.transform,
src_nodata=raster.meta["nodata"],
src_nodata=nodata,
destination=dst_array,
dst_crs=dst_crs,
dst_transform=dst_transform,
dst_nodata=base_raster.meta["nodata"],
dst_nodata=nodata,
resampling=resampling_method,
)[0]

out_rasters.append((out_image, out_meta))
out_profile.update({"transform": dst_transform, "width": dst_width, "height": dst_height, "crs": dst_crs})

out_rasters.append((out_image, out_profile))

return out_rasters

Expand All @@ -91,7 +98,7 @@ def unify_raster_grids(
rasters_to_unify: Sequence[rasterio.io.DatasetReader],
resampling_method: Literal["nearest", "bilinear", "cubic", "average", "gauss", "max", "min"] = "nearest",
same_extent: bool = False,
) -> List[Tuple[np.ndarray, dict]]:
) -> List[Tuple[np.ndarray, Profile]]:
"""Unifies (reprojects, resamples, aligns and optionally clips) given rasters relative to base raster.
Args:
Expand All @@ -104,7 +111,7 @@ def unify_raster_grids(
as the base raster. Expands smaller rasters with nodata cells. Defaults to False.
Returns:
List of unified rasters' data and metadata. First element is the base raster.
List of unified rasters' data and profiles. First element is the base raster.
Raises:
InvalidParameterValueException: Rasters to unify is empty.
Expand Down

0 comments on commit 5680031

Please sign in to comment.