Skip to content

Commit

Permalink
Merge pull request #416 from GispoCoding/415-coda-fixes
Browse files Browse the repository at this point in the history
415 coda fixes
  • Loading branch information
nmaarnio authored Aug 13, 2024
2 parents a4ff8d1 + 8ec96f6 commit 2cc2d58
Show file tree
Hide file tree
Showing 9 changed files with 667 additions and 695 deletions.
176 changes: 88 additions & 88 deletions eis_toolkit/transformations/coda/alr.py
Original file line number Diff line number Diff line change
@@ -1,88 +1,88 @@
from numbers import Number

import numpy as np
import pandas as pd
from beartype import beartype
from beartype.typing import Optional, Sequence

from eis_toolkit.exceptions import InvalidColumnException, NumericValueSignException
from eis_toolkit.utilities.aitchison_geometry import _closure
from eis_toolkit.utilities.checks.compositional import check_in_simplex_sample_space
from eis_toolkit.utilities.miscellaneous import rename_columns_by_pattern


@beartype
def _alr_transform(df: pd.DataFrame, columns: Sequence[str], denominator_column: str) -> pd.DataFrame:

ratios = df[columns].div(df[denominator_column], axis=0)
return np.log(ratios)


@beartype
def alr_transform(
df: pd.DataFrame, column: Optional[str] = None, keep_denominator_column: bool = False
) -> pd.DataFrame:
"""
Perform an additive logratio transformation on the data.
Args:
df: A dataframe of compositional data.
column: The name of the column to be used as the denominator column.
keep_denominator_column: Whether to include the denominator column in the result. If True, the returned
dataframe retains its original shape.
Returns:
A new dataframe containing the ALR transformed data.
Raises:
InvalidColumnException: The input column isn't found in the dataframe.
InvalidCompositionException: Data is not normalized to the expected value.
NumericValueSignException: Data contains zeros or negative values.
"""
check_in_simplex_sample_space(df)

if column is not None and column not in df.columns:
raise InvalidColumnException(f"The column {column} was not found in the dataframe.")

column = column if column is not None else df.columns[-1]

columns = [col for col in df.columns]

if not keep_denominator_column and column in columns:
columns.remove(column)

return rename_columns_by_pattern(_alr_transform(df, columns, column))


@beartype
def _inverse_alr(df: pd.DataFrame, denominator_column: str, scale: Number = 1.0) -> pd.DataFrame:
dfc = df.copy()

if denominator_column not in dfc.columns.values:
# Add the denominator column
dfc[denominator_column] = 0.0

return _closure(np.exp(dfc), scale)


@beartype
def inverse_alr(df: pd.DataFrame, denominator_column: str, scale: Number = 1.0) -> pd.DataFrame:
"""
Perform the inverse transformation for a set of ALR transformed data.
Args:
df: A dataframe of ALR transformed compositional data.
denominator_column: The name of the denominator column.
scale: The value to which each composition should be normalized. Eg., if the composition is expressed
as percentages, scale=100.
Returns:
A dataframe containing the inverse transformed data.
Raises:
NumericValueSignException: The input scale value is zero or less.
"""
if scale <= 0:
raise NumericValueSignException("The scale value should be positive.")

return _inverse_alr(df, denominator_column, scale)
from numbers import Number

import numpy as np
import pandas as pd
from beartype import beartype
from beartype.typing import Optional, Sequence

from eis_toolkit.exceptions import InvalidColumnException, NumericValueSignException
from eis_toolkit.utilities.aitchison_geometry import _closure
from eis_toolkit.utilities.checks.compositional import check_compositional_data
from eis_toolkit.utilities.miscellaneous import rename_columns_by_pattern


@beartype
def _alr_transform(df: pd.DataFrame, columns: Sequence[str], denominator_column: str) -> pd.DataFrame:

ratios = df[columns].div(df[denominator_column], axis=0)
return np.log(ratios)


@beartype
def alr_transform(
df: pd.DataFrame, column: Optional[str] = None, keep_denominator_column: bool = False
) -> pd.DataFrame:
"""
Perform an additive logratio transformation on the data.
Args:
df: A dataframe of compositional data.
column: The name of the column to be used as the denominator column.
keep_denominator_column: Whether to include the denominator column in the result. If True, the returned
dataframe retains its original shape.
Returns:
A new dataframe containing the ALR transformed data.
Raises:
InvalidColumnException: The input column isn't found in the dataframe.
InvalidCompositionException: Data is not normalized to the expected value.
NumericValueSignException: Data contains zeros or negative values.
"""
check_compositional_data(df)

if column is not None and column not in df.columns:
raise InvalidColumnException(f"The column {column} was not found in the dataframe.")

column = column if column is not None else df.columns[-1]

columns = [col for col in df.columns]

if not keep_denominator_column and column in columns:
columns.remove(column)

return rename_columns_by_pattern(_alr_transform(df, columns, column))


@beartype
def _inverse_alr(df: pd.DataFrame, denominator_column: str, scale: Number = 1.0) -> pd.DataFrame:
dfc = df.copy()

if denominator_column not in dfc.columns.values:
# Add the denominator column
dfc[denominator_column] = 0.0

return _closure(np.exp(dfc), scale)


@beartype
def inverse_alr(df: pd.DataFrame, denominator_column: str, scale: Number = 1.0) -> pd.DataFrame:
"""
Perform the inverse transformation for a set of ALR transformed data.
Args:
df: A dataframe of ALR transformed compositional data.
denominator_column: The name of the denominator column.
scale: The value to which each composition should be normalized. Eg., if the composition is expressed
as percentages, scale=100.
Returns:
A dataframe containing the inverse transformed data.
Raises:
NumericValueSignException: The input scale value is zero or less.
"""
if scale <= 0:
raise NumericValueSignException("The scale value should be positive.")

return _inverse_alr(df, denominator_column, scale)
158 changes: 79 additions & 79 deletions eis_toolkit/transformations/coda/clr.py
Original file line number Diff line number Diff line change
@@ -1,79 +1,79 @@
from numbers import Number

import numpy as np
import pandas as pd
from beartype import beartype
from beartype.typing import Optional, Sequence
from scipy.stats import gmean

from eis_toolkit.exceptions import NumericValueSignException
from eis_toolkit.utilities.aitchison_geometry import _closure
from eis_toolkit.utilities.checks.compositional import check_in_simplex_sample_space
from eis_toolkit.utilities.miscellaneous import rename_columns, rename_columns_by_pattern


@beartype
def _centered_ratio(row: pd.Series) -> pd.Series:

return row / gmean(row)


@beartype
def _clr_transform(df: pd.DataFrame) -> pd.DataFrame:

dfc = df.copy()
dfc = dfc.apply(_centered_ratio, axis=1)

return np.log(dfc)


@beartype
def clr_transform(df: pd.DataFrame) -> pd.DataFrame:
"""
Perform a centered logratio transformation on the data.
Args:
df: A dataframe of compositional data.
Returns:
A new dataframe containing the CLR transformed data.
Raises:
InvalidCompositionException: Data is not normalized to the expected value.
NumericValueSignException: Data contains zeros or negative values.
"""
check_in_simplex_sample_space(df)
return rename_columns_by_pattern(_clr_transform(df))


@beartype
def _inverse_clr(df: pd.DataFrame, colnames: Optional[Sequence[str]] = None, scale: Number = 1.0) -> pd.DataFrame:
inverse = _closure(np.exp(df), scale)

if colnames is not None:
return rename_columns(inverse, colnames)

return inverse


@beartype
def inverse_clr(df: pd.DataFrame, colnames: Optional[Sequence[str]] = None, scale: Number = 1.0) -> pd.DataFrame:
"""
Perform the inverse transformation for a set of CLR transformed data.
Args:
df: A dataframe of CLR transformed compositional data.
colnames: List of column names to rename the columns to.
scale: The value to which each composition should be normalized. Eg., if the composition is expressed
as percentages, scale=100.
Returns:
A dataframe containing the inverse transformed data.
Raises:
NumericValueSignException: The input scale value is zero or less.
"""
if scale <= 0:
raise NumericValueSignException("The scale value should be positive.")

return _inverse_clr(df, colnames, scale)
from numbers import Number

import numpy as np
import pandas as pd
from beartype import beartype
from beartype.typing import Optional, Sequence
from scipy.stats import gmean

from eis_toolkit.exceptions import NumericValueSignException
from eis_toolkit.utilities.aitchison_geometry import _closure
from eis_toolkit.utilities.checks.compositional import check_compositional_data
from eis_toolkit.utilities.miscellaneous import rename_columns, rename_columns_by_pattern


@beartype
def _centered_ratio(row: pd.Series) -> pd.Series:

return row / gmean(row)


@beartype
def _clr_transform(df: pd.DataFrame) -> pd.DataFrame:

dfc = df.copy()
dfc = dfc.apply(_centered_ratio, axis=1)

return np.log(dfc)


@beartype
def clr_transform(df: pd.DataFrame) -> pd.DataFrame:
"""
Perform a centered logratio transformation on the data.
Args:
df: A dataframe of compositional data.
Returns:
A new dataframe containing the CLR transformed data.
Raises:
InvalidCompositionException: Data is not normalized to the expected value.
NumericValueSignException: Data contains zeros or negative values.
"""
check_compositional_data(df)
return rename_columns_by_pattern(_clr_transform(df))


@beartype
def _inverse_clr(df: pd.DataFrame, colnames: Optional[Sequence[str]] = None, scale: Number = 1.0) -> pd.DataFrame:
inverse = _closure(np.exp(df), scale)

if colnames is not None:
return rename_columns(inverse, colnames)

return inverse


@beartype
def inverse_clr(df: pd.DataFrame, colnames: Optional[Sequence[str]] = None, scale: Number = 1.0) -> pd.DataFrame:
"""
Perform the inverse transformation for a set of CLR transformed data.
Args:
df: A dataframe of CLR transformed compositional data.
colnames: List of column names to rename the columns to.
scale: The value to which each composition should be normalized. Eg., if the composition is expressed
as percentages, scale=100.
Returns:
A dataframe containing the inverse transformed data.
Raises:
NumericValueSignException: The input scale value is zero or less.
"""
if scale <= 0:
raise NumericValueSignException("The scale value should be positive.")

return _inverse_clr(df, colnames, scale)
Loading

0 comments on commit 2cc2d58

Please sign in to comment.