Skip to content

Commit

Permalink
Docu updated.
Browse files Browse the repository at this point in the history
  • Loading branch information
vsht committed Jul 25, 2023
1 parent 464190c commit 0487572
Show file tree
Hide file tree
Showing 19 changed files with 2,922 additions and 17 deletions.
5 changes: 0 additions & 5 deletions FeynCalcBookDev/ApartFF.html
Original file line number Diff line number Diff line change
Expand Up @@ -181,10 +181,5 @@ <h3 id="examples">Examples</h3>
<div class="sourceCode" id="cb26"><pre class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb26-1"><a href="#cb26-1" aria-hidden="true" tabindex="-1"></a>ApartFF<span class="op">[</span>ApartFF<span class="op">[</span>SFAD<span class="op">[{{</span><span class="dv">0</span><span class="op">,</span> nb . k1<span class="op">}}]</span> int2<span class="op">,</span> SPD<span class="op">[</span>nb<span class="op">,</span> k1<span class="op">],</span> <span class="op">{</span>k1<span class="op">,</span> k2<span class="op">}],</span> <span class="op">{</span>k1<span class="op">,</span> k2<span class="op">},</span> FDS <span class="ot">-&gt;</span> <span class="cn">False</span><span class="op">,</span> </span>
<span id="cb26-2"><a href="#cb26-2" aria-hidden="true" tabindex="-1"></a> DropScaleless <span class="ot">-&gt;</span> <span class="cn">False</span><span class="op">]</span></span></code></pre></div>
<p><span class="math display">1-\frac{\text{k1}\cdot \;\text{nb}}{(\text{k1}\cdot \;\text{nb}+\text{k2}\cdot \;\text{nb}+i \eta )}</span></p>
<p>ApartFF can also handle <code>GLI</code>s</p>
<div class="sourceCode" id="cb27"><pre class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb27-1"><a href="#cb27-1" aria-hidden="true" tabindex="-1"></a>topo <span class="ex">=</span> FCTopology<span class="op">[</span>preTopo<span class="op">,</span> <span class="op">{</span>SFAD<span class="op">[</span>k1<span class="op">],</span> SFAD<span class="op">[{</span>k1<span class="op">,</span> <span class="fu">m</span><span class="sc">^</span><span class="dv">2</span><span class="op">}],</span> SFAD<span class="op">[{</span>k2<span class="op">,</span> <span class="fu">m</span><span class="sc">^</span><span class="dv">2</span><span class="op">}],</span> SFAD<span class="op">[{</span>k1 <span class="sc">-</span> k2<span class="op">}]},</span> <span class="op">{</span>k1<span class="op">,</span> k2<span class="op">},</span> <span class="op">{},</span> <span class="op">{},</span> <span class="op">{}]</span></span></code></pre></div>
<p><span class="math display">\text{FCTopology}\left(\text{preTopo},\left\{\frac{1}{(\text{k1}^2+i \eta )},\frac{1}{(\text{k1}^2-m^2+i \eta )},\frac{1}{(\text{k2}^2-m^2+i \eta )},\frac{1}{((\text{k1}-\text{k2})^2+i \eta )}\right\},\{\text{k1},\text{k2}\},\{\},\{\},\{\}\right)</span></p>
<div class="sourceCode" id="cb28"><pre class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb28-1"><a href="#cb28-1" aria-hidden="true" tabindex="-1"></a>ApartFF<span class="op">[</span>GLI<span class="op">[</span>preTopo<span class="op">,</span> <span class="op">{</span><span class="dv">1</span><span class="op">,</span> <span class="dv">1</span><span class="op">,</span> <span class="dv">1</span><span class="op">,</span> <span class="dv">1</span><span class="op">}],</span> topo<span class="op">]</span></span></code></pre></div>
<p><span class="math display">\text{FCGV}(\text{GLIProduct})\left(-\frac{1}{m^2},G^{\text{preTopo}}(1,0,1,1)\right)+\text{FCGV}(\text{GLIProduct})\left(\frac{1}{m^2},G^{\text{preTopo}}(0,1,1,1)\right)</span></p>
</body>
</html>
161 changes: 161 additions & 0 deletions FeynCalcBookDev/ColorAlgebra.html

Large diffs are not rendered by default.

126 changes: 126 additions & 0 deletions FeynCalcBookDev/Contractions.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>FeynCalc manual (development version)</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<link rel="stylesheet" href="css/feyncalc.css" />
<script src="js/katex.min.js"></script>
<script>document.addEventListener("DOMContentLoaded", function () {
var mathElements = document.getElementsByClassName("math");
var macros = [];
for (var i = 0; i < mathElements.length; i++) {
var texText = mathElements[i].firstChild;
if (mathElements[i].tagName == "SPAN") {
katex.render(texText.data, mathElements[i], {
displayMode: mathElements[i].classList.contains('display'),
throwOnError: false,
macros: macros,
fleqn: true
});
}}});
</script>
<link rel="stylesheet" href="js/katex.min.css" />

</head>
<body>
<header id="title-block-header">
<h1 class="title">FeynCalc manual (development version)</h1>
</header>
<div class="sourceCode" id="cb1"><pre class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a> </span></code></pre></div>
<h2 id="contractions">Contractions</h2>
<h3 id="see-also">See also</h3>
<p><a href="Extra/FeynCalc.html">Overview</a>.</p>
<h3 id="simplifications">Simplifications</h3>
<p>Now that we have some basic understanding of FeynCalc objects, let us do something with them. Contractions of Lorentz indices are one of the most essential operations in symbolic QFT calculations. In FeynCalc the corresponding function is called <code>Contract</code></p>
<div class="sourceCode" id="cb2"><pre class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a>FV<span class="op">[</span><span class="fu">p</span><span class="op">,</span> <span class="sc">\</span><span class="op">[</span>Mu<span class="op">]]</span> MT<span class="op">[</span><span class="sc">\</span><span class="op">[</span>Mu<span class="op">],</span> <span class="sc">\</span><span class="op">[</span>Nu<span class="op">]]</span></span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>Contract<span class="op">[</span><span class="sc">%</span><span class="op">]</span></span></code></pre></div>
<p><span class="math display">\overline{p}^{\mu } \bar{g}^{\mu \nu }</span></p>
<p><span class="math display">\overline{p}^{\nu }</span></p>
<div class="sourceCode" id="cb3"><pre class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>FV<span class="op">[</span><span class="fu">p</span><span class="op">,</span> <span class="sc">\</span><span class="op">[</span>Alpha<span class="op">]]</span> FV<span class="op">[</span><span class="fu">q</span><span class="op">,</span> <span class="sc">\</span><span class="op">[</span>Alpha<span class="op">]]</span></span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>Contract<span class="op">[</span><span class="sc">%</span><span class="op">]</span></span></code></pre></div>
<p><span class="math display">\overline{p}^{\alpha } \overline{q}^{\alpha }</span></p>
<p><span class="math display">\overline{p}\cdot \overline{q}</span></p>
<p>Notice that when we enter noncommutative objects, such as Dirac matrices, we use <code>Dot</code> (<code>.</code>) and not <code>Times</code> (<code>*</code>)</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>FV<span class="op">[</span><span class="fu">p</span><span class="op">,</span> <span class="sc">\</span><span class="op">[</span>Alpha<span class="op">]]</span> MT<span class="op">[</span><span class="sc">\</span><span class="op">[</span><span class="fu">Beta</span><span class="op">],</span> <span class="sc">\</span><span class="op">[</span><span class="fu">Gamma</span><span class="op">]]</span> GA<span class="op">[</span><span class="sc">\</span><span class="op">[</span>Alpha<span class="op">]]</span> . GA<span class="op">[</span><span class="sc">\</span><span class="op">[</span><span class="fu">Beta</span><span class="op">]]</span> . GA<span class="op">[</span><span class="sc">\</span><span class="op">[</span><span class="fu">Gamma</span><span class="op">]]</span></span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>Contract<span class="op">[</span><span class="sc">%</span><span class="op">]</span></span></code></pre></div>
<p><span class="math display">\overline{p}^{\alpha } \bar{\gamma }^{\alpha }.\bar{\gamma }^{\beta }.\bar{\gamma }^{\gamma } \bar{g}^{\beta \gamma }</span></p>
<p><span class="math display">\left(\bar{\gamma }\cdot \overline{p}\right).\bar{\gamma }^{\gamma }.\bar{\gamma }^{\gamma }</span></p>
<p>This is because <code>Times</code> is commutative, so writing something like</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode mathematica"><code class="sourceCode mathematica"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>GA<span class="op">[</span><span class="sc">\</span><span class="op">[</span>Delta<span class="op">]]</span> GA<span class="op">[</span><span class="sc">\</span><span class="op">[</span><span class="fu">Beta</span><span class="op">]]</span> GA<span class="op">[</span><span class="sc">\</span><span class="op">[</span>Alpha<span class="op">]]</span></span></code></pre></div>
<p><span class="math display">\bar{\gamma }^{\alpha } \bar{\gamma }^{\beta } \bar{\gamma }^{\delta }</span></p>
<p>will give you completely wrong results. It is also a very common beginner’s mistake!</p>
</body>
</html>
Loading

0 comments on commit 0487572

Please sign in to comment.