Skip to content

Commit

Permalink
Solidly lit
Browse files Browse the repository at this point in the history
- Upload a bitset for each section indicating if blocks are solid
- When interpolating light, count the number of transparent blocks and
  divide to avoid the incorrect "AO" effect near the ground
  • Loading branch information
Jozufozu committed Jul 28, 2024
1 parent 8dce80b commit 601b707
Show file tree
Hide file tree
Showing 3 changed files with 155 additions and 37 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
import dev.engine_room.flywheel.api.task.Plan;
import dev.engine_room.flywheel.backend.engine.indirect.StagingBuffer;
import dev.engine_room.flywheel.backend.gl.buffer.GlBuffer;
import dev.engine_room.flywheel.lib.math.MoreMath;
import dev.engine_room.flywheel.lib.task.SimplePlan;
import it.unimi.dsi.fastutil.ints.IntArrayList;
import it.unimi.dsi.fastutil.longs.Long2IntMap;
Expand Down Expand Up @@ -36,7 +37,10 @@
* <p>Thus, each section occupies 5832 bytes.
*/
public class LightStorage {
public static final long SECTION_SIZE_BYTES = 9 * 9 * 9 * 8;
public static final int BLOCKS_PER_SECTION = 18 * 18 * 18;
public static final int LIGHT_SIZE_BYTES = BLOCKS_PER_SECTION;
public static final int SOLID_SIZE_BYTES = MoreMath.ceilingDiv(BLOCKS_PER_SECTION, Integer.SIZE) * Integer.BYTES;
public static final int SECTION_SIZE_BYTES = SOLID_SIZE_BYTES + LIGHT_SIZE_BYTES;
private static final int DEFAULT_ARENA_CAPACITY_SECTIONS = 64;
private static final int INVALID_SECTION = -1;

Expand Down Expand Up @@ -158,6 +162,8 @@ public void collectSection(long section) {
// Zero it out first. This is basically free and makes it easier to handle missing sections later.
MemoryUtil.memSet(ptr, 0, SECTION_SIZE_BYTES);

collectSolidData(ptr, section);

collectCenter(blockLight, skyLight, ptr, section);

for (SectionEdge i : SectionEdge.values()) {
Expand All @@ -175,6 +181,53 @@ public void collectSection(long section) {
collectCorners(blockLight, skyLight, ptr, section);
}

private void collectSolidData(long ptr, long section) {
var blockPos = new BlockPos.MutableBlockPos();
int xMin = SectionPos.sectionToBlockCoord(SectionPos.x(section));
int yMin = SectionPos.sectionToBlockCoord(SectionPos.y(section));
int zMin = SectionPos.sectionToBlockCoord(SectionPos.z(section));

var bitSet = new BitSet(BLOCKS_PER_SECTION);
int index = 0;
for (int y = -1; y < 17; y++) {
for (int z = -1; z < 17; z++) {
for (int x = -1; x < 17; x++) {
blockPos.set(xMin + x, yMin + y, zMin + z);

boolean isFullBlock = level.getBlockState(blockPos)
.isCollisionShapeFullBlock(level, blockPos);

if (isFullBlock) {
bitSet.set(index);
}

index++;
}
}
}

var longArray = bitSet.toLongArray();
for (long l : longArray) {
MemoryUtil.memPutLong(ptr, l);
ptr += Long.BYTES;
}
}

private void writeSolid(long ptr, int index, boolean blockValid) {
if (!blockValid) {
return;
}
int intIndex = index / Integer.SIZE;
int bitIndex = index % Integer.SIZE;

long offset = intIndex * Integer.BYTES;

int bitField = MemoryUtil.memGetInt(ptr + offset);
bitField |= 1 << bitIndex;

MemoryUtil.memPutInt(ptr + offset, bitField);
}

private void collectXStrip(LayerLightEventListener blockLight, LayerLightEventListener skyLight, long ptr, long section, SectionEdge y, SectionEdge z) {
var pos = SectionPos.of(section);
var blockData = blockLight.getDataLayerData(pos);
Expand Down Expand Up @@ -303,7 +356,7 @@ private void write(long ptr, int x, int y, int z, int block, int sky) {

long packedByte = (block & 0xF) | ((sky & 0xF) << 4);

MemoryUtil.memPutByte(ptr + offset, (byte) packedByte);
MemoryUtil.memPutByte(ptr + SOLID_SIZE_BYTES + offset, (byte) packedByte);
}

/**
Expand Down
Original file line number Diff line number Diff line change
@@ -1,6 +1,16 @@
const uint _FLW_LIGHT_SECTION_SIZE_BYTES = 18 * 18 * 18;
const uint _FLW_BLOCKS_PER_SECTION = 18 * 18 * 18;
const uint _FLW_LIGHT_SIZE_BYTES = _FLW_BLOCKS_PER_SECTION;
const uint _FLW_SOLID_SIZE_BYTES = ((_FLW_BLOCKS_PER_SECTION + 31) / 32) * 4;
const uint _FLW_LIGHT_START_BYTES = _FLW_SOLID_SIZE_BYTES;
const uint _FLW_LIGHT_SECTION_SIZE_BYTES = _FLW_SOLID_SIZE_BYTES + _FLW_LIGHT_SIZE_BYTES;

const uint _FLW_SOLID_START_INTS = 0;
const uint _FLW_LIGHT_START_INTS = _FLW_SOLID_SIZE_BYTES / 4;
const uint _FLW_LIGHT_SECTION_SIZE_INTS = _FLW_LIGHT_SECTION_SIZE_BYTES / 4;

const uint _FLW_COMPLETELY_SOLID = 0x7FFFFFFu;
const float _FLW_EPSILON = 1e-5;

uint _flw_indexLut(uint index);

uint _flw_indexLight(uint index);
Expand Down Expand Up @@ -51,17 +61,28 @@ bool _flw_chunkCoordToSectionIndex(ivec3 sectionPos, out uint index) {
return false;
}

vec2 _flw_lightAt(uint sectionOffset, uvec3 blockInSectionPos) {
uvec2 _flw_lightAt(uint sectionOffset, uvec3 blockInSectionPos) {
uint byteOffset = blockInSectionPos.x + blockInSectionPos.z * 18u + blockInSectionPos.y * 18u * 18u;

uint uintOffset = byteOffset >> 2u;
uint bitOffset = (byteOffset & 3u) << 3;

uint raw = _flw_indexLight(sectionOffset + uintOffset);
uint raw = _flw_indexLight(sectionOffset + _FLW_LIGHT_START_INTS + uintOffset);
uint block = (raw >> bitOffset) & 0xFu;
uint sky = (raw >> (bitOffset + 4u)) & 0xFu;

return vec2(block, sky);
return uvec2(block, sky);
}

bool _flw_isSolid(uint sectionOffset, uvec3 blockInSectionPos) {
uint bitOffset = blockInSectionPos.x + blockInSectionPos.z * 18u + blockInSectionPos.y * 18u * 18u;

uint uintOffset = bitOffset / 32u;
uint bitInWordOffset = bitOffset % 32u;

uint word = _flw_indexLight(sectionOffset + _FLW_SOLID_START_INTS + uintOffset);

return (word & (1u << bitInWordOffset)) != 0;
}

bool flw_lightFetch(ivec3 blockPos, out vec2 lightCoord) {
Expand All @@ -74,7 +95,7 @@ bool flw_lightFetch(ivec3 blockPos, out vec2 lightCoord) {

uvec3 blockInSectionPos = (blockPos & 0xF) + 1;

lightCoord = _flw_lightAt(sectionOffset, blockInSectionPos) / 15.;
lightCoord = vec2(_flw_lightAt(sectionOffset, blockInSectionPos)) / 15.;
return true;
}

Expand Down Expand Up @@ -104,14 +125,14 @@ bool flw_light(vec3 worldPos, out vec2 lightCoord) {
// Fetch everything for trilinear interpolation
// Hypothetically we could re-order these and do some calculations in-between fetches
// to help with latency hiding, but the compiler should be able to do that for us.
vec2 light000 = _flw_lightAt(sectionOffset, lowestCorner);
vec2 light001 = _flw_lightAt(sectionOffset, lowestCorner + uvec3(0, 0, 1));
vec2 light010 = _flw_lightAt(sectionOffset, lowestCorner + uvec3(0, 1, 0));
vec2 light011 = _flw_lightAt(sectionOffset, lowestCorner + uvec3(0, 1, 1));
vec2 light100 = _flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 0, 0));
vec2 light101 = _flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 0, 1));
vec2 light110 = _flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 1, 0));
vec2 light111 = _flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 1, 1));
vec2 light000 = vec2(_flw_lightAt(sectionOffset, lowestCorner));
vec2 light001 = vec2(_flw_lightAt(sectionOffset, lowestCorner + uvec3(0, 0, 1)));
vec2 light010 = vec2(_flw_lightAt(sectionOffset, lowestCorner + uvec3(0, 1, 0)));
vec2 light011 = vec2(_flw_lightAt(sectionOffset, lowestCorner + uvec3(0, 1, 1)));
vec2 light100 = vec2(_flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 0, 0)));
vec2 light101 = vec2(_flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 0, 1)));
vec2 light110 = vec2(_flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 1, 0)));
vec2 light111 = vec2(_flw_lightAt(sectionOffset, lowestCorner + uvec3(1, 1, 1)));

vec2 light00 = mix(light000, light001, interpolant.z);
vec2 light01 = mix(light010, light011, interpolant.z);
Expand All @@ -131,20 +152,44 @@ uint _flw_lightIndex(in uvec3 p) {

/// Premtively collect all light in a 3x3x3 area centered on our block.
/// Depending on the normal, we won't use all the data, but fetching on demand will have many duplicated fetches.
vec2[27] _flw_lightFetch3x3x3(uint sectionOffset, ivec3 blockInSectionPos) {
vec2[27] lights;
uvec3[27] _flw_fetchLight3x3x3(uint sectionOffset, ivec3 blockInSectionPos, uint solid) {
uvec3[27] lights;

uint index = 0u;
uint mask = 1u;
for (int y = -1; y <= 1; y++) {
for (int z = -1; z <= 1; z++) {
for (int x = -1; x <= 1; x++) {
lights[_flw_lightIndex(uvec3(x + 1, y + 1, z + 1))] = _flw_lightAt(sectionOffset, uvec3(blockInSectionPos + ivec3(x, y, z)));
// 0 if the block is solid, 1 if it's not.
uint flag = uint((solid & mask) == 0u);
lights[index] = uvec3(_flw_lightAt(sectionOffset, uvec3(blockInSectionPos + ivec3(x, y, z))), flag);
index++;
mask <<= 1;
}
}
}

return lights;
}

uint _flw_fetchSolid3x3x3(uint sectionOffset, ivec3 blockInSectionPos) {
uint ret = 0;

uint index = 0;
for (int y = -1; y <= 1; y++) {
for (int z = -1; z <= 1; z++) {
for (int x = -1; x <= 1; x++) {
bool flag = _flw_isSolid(sectionOffset, uvec3(blockInSectionPos + ivec3(x, y, z)));
ret |= uint(flag) << index;

index++;
}
}
}

return ret;
}

/// Calculate the light for a direction by averaging the light at the corners of the block.
///
/// To make this reusable across directions, c00..c11 choose what values relative to each corner to use.
Expand All @@ -155,16 +200,26 @@ vec2[27] _flw_lightFetch3x3x3(uint sectionOffset, ivec3 blockInSectionPos) {
/// @param lights The light data for the 3x3x3 area.
/// @param interpolant The position within the center block.
/// @param c00..c11 4 offsets to determine which "direction" we are averaging.
vec2 _flw_lightForDirection(in vec2[27] lights, in vec3 interpolant, in uvec3 c00, in uvec3 c01, in uvec3 c10, in uvec3 c11) {

vec2 light000 = lights[_flw_lightIndex(c00 + uvec3(0u, 0u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 0u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 0u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 0u, 0u))];
vec2 light001 = lights[_flw_lightIndex(c00 + uvec3(0u, 0u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 0u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 0u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 0u, 1u))];
vec2 light010 = lights[_flw_lightIndex(c00 + uvec3(0u, 1u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 1u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 1u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 1u, 0u))];
vec2 light011 = lights[_flw_lightIndex(c00 + uvec3(0u, 1u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 1u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 1u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 1u, 1u))];
vec2 light100 = lights[_flw_lightIndex(c00 + uvec3(1u, 0u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 0u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 0u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 0u, 0u))];
vec2 light101 = lights[_flw_lightIndex(c00 + uvec3(1u, 0u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 0u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 0u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 0u, 1u))];
vec2 light110 = lights[_flw_lightIndex(c00 + uvec3(1u, 1u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 1u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 1u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 1u, 0u))];
vec2 light111 = lights[_flw_lightIndex(c00 + uvec3(1u, 1u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 1u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 1u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 1u, 1u))];
vec2 _flw_lightForDirection(in uvec3[27] lights, in vec3 interpolant, in uvec3 c00, in uvec3 c01, in uvec3 c10, in uvec3 c11) {

uvec3 i000 = lights[_flw_lightIndex(c00 + uvec3(0u, 0u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 0u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 0u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 0u, 0u))];
uvec3 i001 = lights[_flw_lightIndex(c00 + uvec3(0u, 0u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 0u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 0u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 0u, 1u))];
uvec3 i010 = lights[_flw_lightIndex(c00 + uvec3(0u, 1u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 1u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 1u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 1u, 0u))];
uvec3 i011 = lights[_flw_lightIndex(c00 + uvec3(0u, 1u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(0u, 1u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(0u, 1u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(0u, 1u, 1u))];
uvec3 i100 = lights[_flw_lightIndex(c00 + uvec3(1u, 0u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 0u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 0u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 0u, 0u))];
uvec3 i101 = lights[_flw_lightIndex(c00 + uvec3(1u, 0u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 0u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 0u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 0u, 1u))];
uvec3 i110 = lights[_flw_lightIndex(c00 + uvec3(1u, 1u, 0u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 1u, 0u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 1u, 0u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 1u, 0u))];
uvec3 i111 = lights[_flw_lightIndex(c00 + uvec3(1u, 1u, 1u))] + lights[_flw_lightIndex(c01 + uvec3(1u, 1u, 1u))] + lights[_flw_lightIndex(c10 + uvec3(1u, 1u, 1u))] + lights[_flw_lightIndex(c11 + uvec3(1u, 1u, 1u))];

// Divide by the number of light transmitting blocks to get the average.
vec2 light000 = i000.z == 0 ? vec2(0) : vec2(i000.xy) / float(i000.z);
vec2 light001 = i001.z == 0 ? vec2(0) : vec2(i001.xy) / float(i001.z);
vec2 light010 = i010.z == 0 ? vec2(0) : vec2(i010.xy) / float(i010.z);
vec2 light011 = i011.z == 0 ? vec2(0) : vec2(i011.xy) / float(i011.z);
vec2 light100 = i100.z == 0 ? vec2(0) : vec2(i100.xy) / float(i100.z);
vec2 light101 = i101.z == 0 ? vec2(0) : vec2(i101.xy) / float(i101.z);
vec2 light110 = i110.z == 0 ? vec2(0) : vec2(i110.xy) / float(i110.z);
vec2 light111 = i111.z == 0 ? vec2(0) : vec2(i111.xy) / float(i111.z);

vec2 light00 = mix(light000, light001, interpolant.z);
vec2 light01 = mix(light010, light011, interpolant.z);
Expand All @@ -174,8 +229,7 @@ vec2 _flw_lightForDirection(in vec2[27] lights, in vec3 interpolant, in uvec3 c0
vec2 light0 = mix(light00, light01, interpolant.y);
vec2 light1 = mix(light10, light11, interpolant.y);

// Divide by 60 (15 * 4) to normalize.
return mix(light0, light1, interpolant.x) / 63.;
return mix(light0, light1, interpolant.x) / 15.;
}

bool flw_light(vec3 worldPos, vec3 normal, out vec2 lightCoord) {
Expand All @@ -194,34 +248,41 @@ bool flw_light(vec3 worldPos, vec3 normal, out vec2 lightCoord) {
// The block's position in the section adjusted into 18x18x18 space
ivec3 blockInSectionPos = (blockPos & 0xF) + 1;

uint solid = _flw_fetchSolid3x3x3(sectionOffset, blockInSectionPos);

if (solid == _FLW_COMPLETELY_SOLID) {
lightCoord = vec2(0.);
return true;
}

// Fetch everything in a 3x3x3 area centered around the block.
vec2[27] lights = _flw_lightFetch3x3x3(sectionOffset, blockInSectionPos);
uvec3[27] lights = _flw_fetchLight3x3x3(sectionOffset, blockInSectionPos, solid);

vec3 interpolant = fract(worldPos);

vec2 lightX;
if (normal.x > 0) {
if (normal.x > _FLW_EPSILON) {
lightX = _flw_lightForDirection(lights, interpolant, uvec3(1u, 0u, 0u), uvec3(1u, 0u, 1u), uvec3(1u, 1u, 0u), uvec3(1u, 1u, 1u));
} else if (normal.x < 0) {
} else if (normal.x < -_FLW_EPSILON) {
lightX = _flw_lightForDirection(lights, interpolant, uvec3(0u, 0u, 0u), uvec3(0u, 0u, 1u), uvec3(0u, 1u, 0u), uvec3(0u, 1u, 1u));
} else {
lightX = vec2(0.);
}

vec2 lightZ;
if (normal.z > 0) {
if (normal.z > _FLW_EPSILON) {
lightZ = _flw_lightForDirection(lights, interpolant, uvec3(0u, 0u, 1u), uvec3(0u, 1u, 1u), uvec3(1u, 0u, 1u), uvec3(1u, 1u, 1u));
} else if (normal.z < 0) {
} else if (normal.z < -_FLW_EPSILON) {
lightZ = _flw_lightForDirection(lights, interpolant, uvec3(0u, 0u, 0u), uvec3(0u, 1u, 0u), uvec3(1u, 0u, 0u), uvec3(1u, 1u, 0u));
} else {
lightZ = vec2(0.);
}

vec2 lightY;
// Average the light in relevant directions at each corner.
if (normal.y > 0.) {
if (normal.y > _FLW_EPSILON) {
lightY = _flw_lightForDirection(lights, interpolant, uvec3(0u, 1u, 0u), uvec3(0u, 1u, 1u), uvec3(1u, 1u, 0u), uvec3(1u, 1u, 1u));
} else if (normal.y < 0.) {
} else if (normal.y < -_FLW_EPSILON) {
lightY = _flw_lightForDirection(lights, interpolant, uvec3(0u, 0u, 0u), uvec3(0u, 0u, 1u), uvec3(1u, 0u, 0u), uvec3(1u, 0u, 1u));
} else {
lightY = vec2(0.);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,10 @@ private MoreMath() {
*/
public static final float SQRT_3_OVER_2 = (float) (Math.sqrt(3.0) / 2.0);

public static int align32(int size) {
return (size + 31) & ~31;
}

public static int align16(int size) {
return (size + 15) & ~15;
}
Expand Down

0 comments on commit 601b707

Please sign in to comment.