Skip to content

Commit

Permalink
Remove dependecy on lazy fixture
Browse files Browse the repository at this point in the history
  • Loading branch information
apaleyes committed Apr 27, 2024
1 parent 97188a9 commit 4a5d15d
Show file tree
Hide file tree
Showing 9 changed files with 142 additions and 164 deletions.
11 changes: 5 additions & 6 deletions integration_tests/emukit/quadrature/test_wsabil_loop.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
import numpy as np
import pytest
from numpy.testing import assert_array_equal
from pytest_lazyfixture import lazy_fixture

from emukit.core.loop.user_function import UserFunctionWrapper
from emukit.model_wrappers.gpy_quadrature_wrappers import BaseGaussianProcessGPy, QuadratureRBFGaussianMeasure, RBFGPy
Expand Down Expand Up @@ -58,12 +57,12 @@ def loop_fixed(wsabil_fixed):
return emukit_loop, Y.shape[0], X, Y


wsabi_test_list = [lazy_fixture("loop_adapt"), lazy_fixture("loop_fixed")]
wsabi_test_list = ["loop_adapt", "loop_fixed"]


@pytest.mark.parametrize("loop", wsabi_test_list)
def test_wsabil_loop(loop):
emukit_loop, init_size, _, _ = loop
def test_wsabil_loop(loop, request):
emukit_loop, init_size, _, _ = request.getfixturevalue(loop)
num_iter = 5

emukit_loop.run_loop(user_function=UserFunctionWrapper(func), stopping_condition=num_iter)
Expand All @@ -73,8 +72,8 @@ def test_wsabil_loop(loop):


@pytest.mark.parametrize("loop", wsabi_test_list)
def test_wsabil_loop_initial_state(loop):
emukit_loop, _, x_init, y_init = loop
def test_wsabil_loop_initial_state(loop, request):
emukit_loop, _, x_init, y_init = request.getfixturevalue(loop)

assert_array_equal(emukit_loop.loop_state.X, x_init)
assert_array_equal(emukit_loop.loop_state.Y, y_init)
Expand Down
1 change: 0 additions & 1 deletion requirements/test_requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@ black
pytest>=3.5.1
pytest-cov>=2.5.1
mock>=2.0.0
pytest-lazy-fixture>=0.4.2

# For Latin design
PyDOE>=0.3.0
Expand Down
28 changes: 14 additions & 14 deletions tests/emukit/model_wrappers/test_gpy_wrappers_quadrature.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@
import GPy
import numpy as np
import pytest
from pytest_lazyfixture import lazy_fixture

from emukit.model_wrappers.gpy_quadrature_wrappers import (
BaseGaussianProcessGPy,
Expand Down Expand Up @@ -204,21 +203,22 @@ def wrapper_matern52_2(dim1, gpy_matern52):


gpy_test_list = [
lazy_fixture("wrapper_rbf_1"),
lazy_fixture("wrapper_rbf_2"),
lazy_fixture("wrapper_brownian_1"),
lazy_fixture("wrapper_brownian_2"),
lazy_fixture("wrapper_matern12_1"),
lazy_fixture("wrapper_matern12_2"),
lazy_fixture("wrapper_matern32_1"),
lazy_fixture("wrapper_matern32_2"),
lazy_fixture("wrapper_matern52_1"),
lazy_fixture("wrapper_matern52_2"),
"wrapper_rbf_1",
"wrapper_rbf_2",
"wrapper_brownian_1",
"wrapper_brownian_2",
"wrapper_matern12_1",
"wrapper_matern12_2",
"wrapper_matern32_1",
"wrapper_matern32_2",
"wrapper_matern52_1",
"wrapper_matern52_2",
]


@pytest.mark.parametrize("wrapper", gpy_test_list)
def test_create_emukit_model_from_gpy_model_types(wrapper):
@pytest.mark.parametrize("wrapper_name", gpy_test_list)
def test_create_emukit_model_from_gpy_model_types(wrapper_name, request):
wrapper = request.getfixturevalue(wrapper_name)
gpy_model = GPy.models.GPRegression(kernel=wrapper["gpy_kernel"], X=wrapper["data"][0], Y=wrapper["data"][1])
emukit_gp = create_emukit_model_from_gpy_model(gpy_model=gpy_model, measure=wrapper["measure"])

Expand Down Expand Up @@ -252,7 +252,7 @@ def test_create_emukit_model_from_gpy_model_raises_warns():
create_emukit_model_from_gpy_model(gpy_model=gpy_model, integral_bounds=bounds, measure=measure)


def test_base_gp_gpy_raises(gpy_prodbrownian):
def test_base_gp_gpy_raises():
incompatible_offset = -3

n_dim = 2
Expand Down
10 changes: 4 additions & 6 deletions tests/emukit/quadrature/test_measures.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,6 @@

import numpy as np
import pytest
from pytest_lazyfixture import lazy_fixture
from utils import check_grad

from emukit.quadrature.measures import BoxDomain, GaussianMeasure, LebesgueMeasure
Expand Down Expand Up @@ -77,16 +76,15 @@ def gauss_measure():


measure_test_list = [
lazy_fixture("lebesgue_measure"),
lazy_fixture("lebesgue_measure_normalized"),
lazy_fixture("gauss_iso_measure"),
lazy_fixture("gauss_measure"),
DataLebesgueMeasure(),
DataLebesgueNormalizedMeasure(),
DataGaussIsoMeasure(),
DataGaussMeasure(),
]


# === tests shared by all measures start here


@pytest.mark.parametrize("measure", measure_test_list)
def test_measure_gradient_values(measure):
D, measure, dat_bounds = measure.D, measure.measure, measure.dat_bounds
Expand Down
58 changes: 30 additions & 28 deletions tests/emukit/quadrature/test_quadrature_acquisitions.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,6 @@
import GPy
import numpy as np
import pytest
from pytest_lazyfixture import lazy_fixture
from utils import check_grad

from emukit.model_wrappers.gpy_quadrature_wrappers import BaseGaussianProcessGPy, RBFGPy
Expand Down Expand Up @@ -58,50 +57,48 @@ def model_gaussian(gpy_model):


model_test_list = [
lazy_fixture("model_gaussian"),
lazy_fixture("model_lebesgue"),
lazy_fixture("model_lebesgue_normalized"),
"model_gaussian",
"model_lebesgue",
"model_lebesgue_normalized",
]


@pytest.fixture(params=model_test_list)
def model_test_list_fixture(request):
return request.param


# === acquisition fixtures start here


@pytest.fixture
def mutual_information(model_test_list_fixture):
return MutualInformation(model_test_list_fixture)
def mutual_information():
return lambda model: MutualInformation(model)


@pytest.fixture
def squared_correlation(model_test_list_fixture):
return SquaredCorrelation(model_test_list_fixture)
def squared_correlation():
return lambda model: SquaredCorrelation(model)


@pytest.fixture
def integral_variance_reduction(model_test_list_fixture):
return IntegralVarianceReduction(model_test_list_fixture)
def integral_variance_reduction():
return lambda model: IntegralVarianceReduction(model)


@pytest.fixture
def uncertainty_sampling(model_test_list_fixture):
return UncertaintySampling(model_test_list_fixture)
def uncertainty_sampling():
return lambda model: UncertaintySampling(model)


acquisitions_test_list = [
lazy_fixture("mutual_information"),
lazy_fixture("squared_correlation"),
lazy_fixture("integral_variance_reduction"),
lazy_fixture("uncertainty_sampling"),
acquisition_test_list = [
"mutual_information",
"squared_correlation",
"integral_variance_reduction",
"uncertainty_sampling",
]


@pytest.mark.parametrize("aq", acquisitions_test_list)
def test_quadrature_acquisition_shapes(aq):
@pytest.mark.parametrize("model_name", model_test_list)
@pytest.mark.parametrize("aq_name", acquisition_test_list)
def test_quadrature_acquisition_shapes(model_name, aq_name, request):
model = request.getfixturevalue(model_name)
aq_factory = request.getfixturevalue(aq_name)
aq = aq_factory(model)

x = np.array([[-1, 1], [0, 0], [-2, 0.1]])

# value
Expand All @@ -114,8 +111,13 @@ def test_quadrature_acquisition_shapes(aq):
assert res[1].shape == (3, 2)


@pytest.mark.parametrize("aq", acquisitions_test_list)
def test_quadrature_acquisition_gradient_values(aq):
@pytest.mark.parametrize("model_name", model_test_list)
@pytest.mark.parametrize("aq_name", acquisition_test_list)
def test_quadrature_acquisition_gradient_values(model_name, aq_name, request):
model = request.getfixturevalue(model_name)
aq_factory = request.getfixturevalue(aq_name)
aq = aq_factory(model)

func = lambda x: aq.evaluate(x)[:, 0]
dfunc = lambda x: aq.evaluate_with_gradients(x)[1].T
check_grad(func, dfunc, in_shape=(3, 2), bounds=aq.model.X.shape[1] * [(-3, 3)])
47 changes: 23 additions & 24 deletions tests/emukit/quadrature/test_quadrature_kernels.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@
import GPy
import numpy as np
import pytest
from pytest_lazyfixture import lazy_fixture
from utils import check_grad, sample_uniform

from emukit.model_wrappers.gpy_quadrature_wrappers import (
Expand Down Expand Up @@ -297,25 +296,25 @@ def lebesgue_normalized_qprodbrownian():


gaussian_embeddings_test_dict = {
"qrbf": lazy_fixture("gaussian_qrbf"),
"qrbf": "gaussian_qrbf",
}

lebesgue_embeddings_test_dict = {
"qrbf": lazy_fixture("lebesgue_qrbf"),
"qmatern12": lazy_fixture("lebesgue_qmatern12"),
"qmatern32": lazy_fixture("lebesgue_qmatern32"),
"qmatern52": lazy_fixture("lebesgue_qmatern52"),
"qbrownian": lazy_fixture("lebesgue_qbrownian"),
"qprodbrownian": lazy_fixture("lebesgue_qprodbrownian"),
"qrbf": "lebesgue_qrbf",
"qmatern12": "lebesgue_qmatern12",
"qmatern32": "lebesgue_qmatern32",
"qmatern52": "lebesgue_qmatern52",
"qbrownian": "lebesgue_qbrownian",
"qprodbrownian": "lebesgue_qprodbrownian",
}

lebesgue_normalized_embeddings_test_dict = {
"qrbf": lazy_fixture("lebesgue_normalized_qrbf"),
"qmatern12": lazy_fixture("lebesgue_normalized_qmatern12"),
"qmatern32": lazy_fixture("lebesgue_normalized_qmatern32"),
"qmatern52": lazy_fixture("lebesgue_normalized_qmatern52"),
"qbrownian": lazy_fixture("lebesgue_normalized_qbrownian"),
"qprodbrownian": lazy_fixture("lebesgue_normalized_qprodbrownian"),
"qrbf": "lebesgue_normalized_qrbf",
"qmatern12": "lebesgue_normalized_qmatern12",
"qmatern32": "lebesgue_normalized_qmatern32",
"qmatern52": "lebesgue_normalized_qmatern52",
"qbrownian": "lebesgue_normalized_qbrownian",
"qprodbrownian": "lebesgue_normalized_qprodbrownian",
}

embeddings_test_list = (
Expand All @@ -326,8 +325,8 @@ def lebesgue_normalized_qprodbrownian():


@pytest.mark.parametrize("kernel_embedding", embeddings_test_list)
def test_qkernel_shapes(kernel_embedding):
emukit_qkernel, x1, x2, N, M, D, _ = kernel_embedding
def test_qkernel_shapes(kernel_embedding, request):
emukit_qkernel, x1, x2, N, M, D, _ = request.getfixturevalue(kernel_embedding)

# kernel shapes
assert emukit_qkernel.K(x1, x2).shape == (N, M)
Expand Down Expand Up @@ -360,13 +359,13 @@ def test_qkernel_shapes(kernel_embedding):
(lebesgue_normalized_embeddings_test_dict["qprodbrownian"], [5.199166451419295, 5.204923979414083]),
],
)
def test_qkernel_qKq(kernel_embedding, interval):
def test_qkernel_qKq(kernel_embedding, interval, request):
# To test the integral value of the kernel embedding, we check if it lies in some confidence interval.
# These intervals were computed as follows: The kernel emukit_qkernel.qK was integrated by
# simple random sampling with 1e6 samples. This was done 100 times. The intervals show mean\pm 3 std of the 100
# integrals obtained by sampling. There might be a small chance that the true integrals lies outside the
# specified intervals.
emukit_qkernel = kernel_embedding[0]
emukit_qkernel = request.getfixturevalue(kernel_embedding)[0]
qKq = emukit_qkernel.qKq()
assert interval[0] < qKq < interval[1]

Expand Down Expand Up @@ -519,9 +518,9 @@ def test_qkernel_qKq(kernel_embedding, interval):
),
],
)
def test_qkernel_qK(kernel_embedding, intervals):
def test_qkernel_qK(kernel_embedding, intervals, request):
# See test_qkernel_qKq on how the intervals were computed.
emukit_qkernel, _, x2, _, _, _, _ = kernel_embedding
emukit_qkernel, _, x2, _, _, _, _ = request.getfixturevalue(kernel_embedding)
qK = emukit_qkernel.qK(x2)[0, :]
for i in range(4):
assert intervals[i, 0] < qK[i] < intervals[i, 1]
Expand All @@ -531,8 +530,8 @@ def test_qkernel_qK(kernel_embedding, intervals):


@pytest.mark.parametrize("kernel_embedding", embeddings_test_list)
def test_qkernel_gradient_shapes(kernel_embedding):
emukit_qkernel, x1, x2, N, M, D, _ = kernel_embedding
def test_qkernel_gradient_shapes(kernel_embedding, request):
emukit_qkernel, x1, x2, N, M, D, _ = request.getfixturevalue(kernel_embedding)

# gradient of kernel
assert emukit_qkernel.dK_dx1(x1, x2).shape == (D, N, M)
Expand All @@ -545,8 +544,8 @@ def test_qkernel_gradient_shapes(kernel_embedding):


@pytest.mark.parametrize("kernel_embedding", embeddings_test_list)
def test_qkernel_gradient_values(kernel_embedding):
emukit_qkernel, x1, x2, N, M, D, dat_bounds = kernel_embedding
def test_qkernel_gradient_values(kernel_embedding, request):
emukit_qkernel, x1, x2, N, M, D, dat_bounds = request.getfixturevalue(kernel_embedding)

np.random.seed(42)
x1 = sample_uniform(in_shape=(N, D), bounds=dat_bounds)
Expand Down
Loading

0 comments on commit 4a5d15d

Please sign in to comment.