Releases: Eden-Kramer-Lab/replay_identification
Releases · Eden-Kramer-Lab/replay_identification
v0.9.16.dev0
latest Use automated release tag
v0.3.2.dev0
- Fix track labels
- Set likelihood to zero not on track
v0.3.1.dev0
- Add w-track specific 1D random walk state transition
- Add random walk state transition
- Make interface more consistent with scikit-learn
v0.2.1.dev0
- Minor fix to handle the case where the GLM does not converge in the spiking model
v0.2.0.dev0
- Implement smoother, which incorporates both past and future information (feb1db0)
- Allow user to specify
lfp_model
, which can be anyscikit-learn
kernel density estimator (5309783) - Raise NotImplemented Errors for loading and saving models (c8bcc93)
- Convert all data to numpy arrays to handle Pandas DataFrames (a4f58c0)
- Added some model checking plots (ecc8d4c)
- Remove speed from default likelihood (37a6d6a)
v0.1.8.dev0
- Fix handling of NaN
- Don't estimate the movement variance
- Fix the predict function
- Fix the default penalty and knot spacing for spiking model
- Add option to specify bin number
v0.1.7.dev0
- Make speed knot selection for replay state transition based on the data or user specified.
v0.1.6.dev0
- Fix the multiunit likelihood so that the likelihood for the current position is calculated precisely
v0.1.5.dev0
- Minor fix to handle NaN in position for the multiunit likelihood.
v0.1.4.dev0
- Fix the
plot_fitted_multiunit
function to handle both KernelDensity and GaussianMixture from scikit-learn. - Make the code more efficient by eliminating some redundant computation and storage of variables.
- Minor code cleanup