-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
executable file
·300 lines (250 loc) · 12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright 2023 - Valeo Comfort and Driving Assistance - Corentin Sautier @ valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Code inspired by OpenPCDet.
# Credit goes to OpenMMLab: https://github.com/open-mmlab/OpenPCDet
import os
import tqdm
import torch
import argparse
import numpy as np
from pathlib import Path
import torch.distributed as dist
import torch.multiprocessing as mp
from datetime import datetime as dt
from tensorboardX import SummaryWriter
from utils.logger import make_logger
from bevlab.models import make_models
from bevlab.dataloader import make_dataloader
from utils.config import generate_config, log_config
from utils.optimizer import make_optimizer, make_scheduler
from torch.nn.parallel import DistributedDataParallel as DDP
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
def ddp_setup(rank: int, world_size: int):
"""
Args:
rank: Unique identifier of each process
world_size: Total number of processes
"""
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355"
torch.cuda.set_device(rank % world_size)
dist.init_process_group(backend="nccl", rank=rank, world_size=world_size)
def load_pretrained_weights(model, pretrained_path):
# 加载预训练权重
load_dict = torch.load(pretrained_path, map_location='cpu')
pretrained_state_dict = load_dict['state_dict']
model_state_dict = model.state_dict()
# 创建一个新的字典来保存调整后的权重
new_state_dict = {}
for key in model_state_dict.keys():
if key in pretrained_state_dict:
# 获取模型和预训练权重的形状
model_shape = model_state_dict[key].shape
pretrained_shape = pretrained_state_dict[key].shape
if model_shape == pretrained_shape:
# 如果形状匹配,直接使用预训练权重
new_state_dict[key] = pretrained_state_dict[key]
else:
# 如果形状不匹配,进行调整
print(f"Shape mismatch for {key}, model shape: {model_shape}, pretrained shape: {pretrained_shape}")
# 这里你可以根据需求进行调整,例如裁剪、填充、或者跳过该权重
# 示例:如果只考虑形状不匹配时的简单跳过
new_state_dict[key] = model_state_dict[key]
else:
# 如果预训练权重中没有该key,使用模型的默认权重
print(f"Key {key} not found in pretrained weights, using model default weights")
new_state_dict[key] = model_state_dict[key]
# 加载调整后的权重
model.load_state_dict(new_state_dict, strict=False)
def parse_config():
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--config_file', type=str, default=None, help='specify the config for training')
parser.add_argument('--batch_size_per_gpu', type=int, default=None, required=False, help='batch size for training')
parser.add_argument('--lr', type=int, default=None, required=False, help='batch size for training')
parser.add_argument('--epochs', type=int, default=None, required=False, help='number of epochs to train for')
parser.add_argument('--num_workers_per_gpu', type=int, default=None, help='number of workers for dataloader')
parser.add_argument('--name', type=str, default='default', help='name of the experiment')
parser.add_argument('--debug', action='store_true', default=False, help='')
parser.add_argument('--local_rank', type=int, default=0, help='local rank for distributed training')
parser.add_argument('--resume_path', type=str, default=None, help='checkpoint to resume training from')
parser.add_argument('--pretrain_path', type=str, default=None, help='checkpoint to load weights from')
# parser.add_argument('--fix_random_seed', action='store_true', default=False, help='')
args = parser.parse_args()
config = generate_config(args.config_file)
config.SAVE_FOLDER = Path('output', args.name, dt.today().strftime("%d%m%y-%H%M"))
return args, config
def main(rank, world_size):
multigpu = world_size > 1
if multigpu:
ddp_setup(rank, world_size)
args, config = parse_config()
if args.batch_size_per_gpu is not None:
config.OPTIMIZATION.BATCH_SIZE_PER_GPU = args.batch_size_per_gpu
if args.epochs is not None:
config.OPTIMIZATION.NUM_EPOCHS = args.epochs
if args.num_workers_per_gpu is not None:
config.OPTIMIZATION.NUM_WORKERS_PER_GPU = args.num_workers_per_gpu
if args.lr is not None:
config.OPTIMIZATION.LR = args.lr
config.DEBUG = args.debug
config.LOCAL_RANK = rank
# if args.fix_random_seed:
# # unfortunately as grid_sampler_2d_backward_cuda is non-deterministic, reproductibility isn't possible
# torch.use_deterministic_algorithms(True)
# torch.backends.cudnn.benchmark = False
# os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
# random.seed(0)
# np.random.seed(0)
# torch.manual_seed(0)
ckpt_dir = config.SAVE_FOLDER / 'ckpt'
if rank == 0:
ckpt_dir.mkdir(parents=True, exist_ok=True)
log_file = config.SAVE_FOLDER / 'log_train.txt'
logger = make_logger(log_file, rank=rank)
logger.info("==============Logging config==============")
log_config(config, logger)
logger.info('World size : %s' % world_size)
if rank == 0:
os.system('cp %s %s' % (args.config_file, config.SAVE_FOLDER))
train_dataloader = make_dataloader(
config=config,
phase=config.DATASET.DATA_SPLIT['train'],
world_size=world_size,
rank=rank
)
model = make_models(config=config)
if multigpu and not config.ENCODER.COLLATE == "collate_torchsparse":
# sync batchnorm doesn't work with torchsparse
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
optimizer = make_optimizer(model, config)
scheduler = make_scheduler(
config, total_iters=len(train_dataloader) * config.OPTIMIZATION.NUM_EPOCHS
)
model.train()
# model.img_encoder.eval()
# model.img_encoder.decoder.train()
model = model.to(rank)
# load checkpoint if it is possible
if args.resume_path is not None:
logger.warning(f"Continuing previous training: {args.resume_path}")
load_dict = torch.load(args.resume_path, 'cpu')
model.load_state_dict(load_dict['state_dict'], strict=False)
optimizer.load_state_dict(load_dict['optimizer'])
start_epoch = load_dict['epoch']
train_iter = load_dict['iters']
elif args.pretrain_path is not None:
# load_dict = torch.load(args.pretrain_path, 'cpu')
# model.load_state_dict(load_dict['state_dict'], strict=False)
load_pretrained_weights(model, args.pretrain_path)
start_epoch = 0
train_iter = 0
else:
start_epoch = 0
train_iter = 0
if multigpu:
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
train(
model,
start_epoch,
train_iter,
train_dataloader,
optimizer,
scheduler=scheduler,
config=config,
rank=rank,
multigpu=multigpu
)
if multigpu:
dist.destroy_process_group()
def train(model, start_epoch, train_iter, train_dataloader, optimizer, scheduler, config, rank, multigpu):
debug = config.DEBUG
if not debug:
tb_log = SummaryWriter(log_dir=str(config.SAVE_FOLDER / 'tensorboard')) if rank == 0 else None
total_epochs = config.OPTIMIZATION.NUM_EPOCHS
disp_dict = {}
with tqdm.trange(start_epoch, total_epochs, desc='epochs', dynamic_ncols=True, leave=(rank == 0)) as tbar:
total_it_each_epoch = len(train_dataloader)
for cur_epoch in tbar:
if multigpu:
train_dataloader.sampler.set_epoch(cur_epoch)
train_dataloader_iter = iter(train_dataloader)
statistics = {"losses": []}
if rank == 0:
pbar = tqdm.tqdm(total=total_it_each_epoch, leave=False, desc='train', dynamic_ncols=True)
for cur_it in range(len(train_dataloader)):
cur_lr = scheduler[train_iter]
batch = next(train_dataloader_iter)
batch['cur_epoch'] = cur_epoch
batch['voxels'] = batch['voxels'].to(rank, non_blocking=True)
batch['pairing_points'] = batch['pairing_points'].to(rank, non_blocking=True)
batch['pairing_images'] = batch['pairing_images'].to(rank, non_blocking=True)
batch['coordinates'] = batch['coordinates'].to(rank, non_blocking=True)
# batch['cam_coords'] = batch['cam_coords'].to(rank, non_blocking=True)
batch['images'] = batch['images'].to(rank, non_blocking=True)
batch['R_data'] = batch['R_data'].to(rank, non_blocking=True)
batch['T_data'] = batch['T_data'].to(rank, non_blocking=True)
if 'K_data' in batch:
batch['K_data'] = batch['K_data'].to(rank, non_blocking=True)
batch['img_overlap_masks'] = batch['img_overlap_masks'].to(rank, non_blocking=True)
# batch['pc_overlap_masks'] = batch['pc_overlap_masks'].to(rank, non_blocking=True)
for param_group in optimizer.param_groups:
param_group["lr"] = cur_lr
optimizer.zero_grad(set_to_none=True)
loss, metrics = model(batch)
statistics["losses"].append(loss.item())
loss.backward()
optimizer.step()
# log to console and tensorboard
if rank == 0:
pbar.update()
pbar.set_postfix(dict(total_it=train_iter, loss=loss.item(), **metrics))
if not debug:
tb_log.add_scalar('train/loss', loss.item(), train_iter)
for key, value in metrics.items():
tb_log.add_scalar(f'train/{key}', value, train_iter)
tb_log.add_scalar('meta_data/learning_rate', cur_lr, train_iter)
del loss, metrics
train_iter += 1
if rank == 0:
loss = np.mean(statistics['losses'])
disp_dict.update({'loss': np.mean(statistics['losses'])})
tbar.set_postfix(disp_dict)
if not debug:
tb_log.add_scalar('epoch/loss', loss, cur_epoch)
pbar.close()
# save trained model
if isinstance(model, DDP):
torch.save({
"state_dict": model.module.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": cur_epoch+1,
"iters": train_iter,
"config": config},
config.SAVE_FOLDER / 'ckpt' / f'model_{cur_epoch+1}.pt')
else:
torch.save({
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": cur_epoch+1,
"iters": train_iter,
"config": config},
config.SAVE_FOLDER / 'ckpt' / f'model_{cur_epoch+1}.pt')
if __name__ == '__main__':
multigpu = torch.cuda.device_count() > 1
if multigpu:
world_size = torch.cuda.device_count()
mp.spawn(main, args=(world_size,), nprocs=world_size)
else:
main(0, 1)