Skip to content

A Machine Learning workflow to produce a dataset of global net ecosystem CO2 exchange fluxes.

License

Notifications You must be signed in to change notification settings

EXCITED-CO2/excited-workflow

Repository files navigation

EXCITED workflow

An open workflow for creating machine learning models for estimating the global biospheric CO2 exchange.

Using this workflow we aim to better constrain the CO2 exchange in terrestrial ecosystems on longer timescales using estimates from inverse models (e.g., CarbonTracker) as additional input data.

More information is available on the documentation pages.

The following flowchart lays out the workflow of EXCITED:

View flowchart
graph TD;
    monthlymodel(Monthly ML model);
    input[(ERA5, MODIS, etc.)];
    fluxnet[(Fluxnet)];
    carbontracker[(CarbonTracker)];
    dailydataset["hourly fluxnet NEE\n(biased in long term)"];
    hourlymodel("Hourly ML models\n(GPP and respiration)");
    monthlydataset[(Monthly NEE\ndataset)];
    finaldataset[(Final daily\nNEE dataset)];

    fluxnet-->|target| hourlymodel;
    input-->|predictors| hourlymodel;
    input-->|predictors| monthlymodel;
    carbontracker-->|target| monthlymodel;
    hourlymodel-->dailydataset;
    input-->monthlydataset;
    monthlymodel-->monthlydataset;
    dailydataset-->hpf([high pass filter]);
    hpf-->finaldataset;
    monthlydataset-->finaldataset;
    input-->dailydataset;
Loading

About

A Machine Learning workflow to produce a dataset of global net ecosystem CO2 exchange fluxes.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •