Skip to content

Commit

Permalink
Split the ESPResSo tests into 2 classes
Browse files Browse the repository at this point in the history
  • Loading branch information
Satish Kamath committed Jun 25, 2024
1 parent 1e56b2c commit f816f4e
Showing 1 changed file with 95 additions and 44 deletions.
139 changes: 95 additions & 44 deletions eessi/testsuite/tests/apps/espresso/espresso.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,28 +31,14 @@ def filter_scales_P3M():
]


@rfm.simple_test
class EESSI_ESPRESSO(rfm.RunOnlyRegressionTest):

scale = parameter(filter_scales_P3M())
valid_prog_environs = ['default']
valid_systems = ['*']
time_limit = '300m'
# Need to check if QuantumESPRESSO also gets listed.
module_name = parameter(find_modules('ESPResSo'))
# device type is parameterized for an impending CUDA ESPResSo module.
device_type = parameter([DEVICE_TYPES[CPU]])

executable = 'python3 madelung.py'

default_strong_scaling_system_size = 9
default_weak_scaling_system_size = 6

benchmark_info = parameter([
('mpi.ionic_crystals.p3m', 'p3m'),
('mpi.particles.lj', 'lj'),
], fmt=lambda x: x[0], loggable=True)

@run_after('init')
def run_after_init(self):
"""hooks to run after init phase"""
Expand All @@ -66,36 +52,6 @@ def run_after_init(self):
# Set scales as tags
hooks.set_tag_scale(self)

@run_after('init')
def set_tag_ci(self):
""" Setting tests under CI tag. """
if (self.benchmark_info[0] in ['mpi.ionic_crystals.p3m', 'mpi.particles.lj']
and SCALES[self.scale]['num_nodes'] < 2):
self.tags.add('CI')
log(f'tags set to {self.tags}')

if (self.benchmark_info[0] == 'mpi.ionic_crystals.p3m'):
self.tags.add('ionic_crystals_p3m')

if (self.benchmark_info[0] == 'mpi.particles.lj'):
self.tags.add('particles_lj')

@run_after('init')
def set_executable_opts(self):
"""Set executable opts based on device_type parameter"""
num_default = 0 # If this test already has executable opts, they must have come from the command line
hooks.check_custom_executable_opts(self, num_default=num_default)
if (not self.has_custom_executable_opts and self.benchmark_info[0] in ['mpi.ionic_crystals.p3m']):
# By default we run weak scaling since the strong scaling sizes need to change based on max node size and a
# corresponding min node size has to be chozen.
self.executable_opts += ['--size', str(self.default_weak_scaling_system_size), '--weak-scaling']
utils.log(f'executable_opts set to {self.executable_opts}')
elif (not self.has_custom_executable_opts and self.benchmark_info[0] in ['mpi.particles.lj']):
# By default we run weak scaling since the strong scaling sizes need to change based on max node size and a
# corresponding min node size has to be chozen. For this test the default values embedded in the lj.py are
# good enough. Otherwise custom executable options can be passed anyways.
self.executable = 'python3 lj.py' # Updating the executable.

@run_after('setup')
def set_num_tasks_per_node(self):
""" Setting number of tasks per node and cpus per task in this function. This function sets num_cpus_per_task
Expand Down Expand Up @@ -142,3 +98,98 @@ def assert_sanity(self):
@performance_function('s/step')
def perf(self):
return sn.extractsingle(r'^Performance:\s+(?P<perf>\S+)', self.stdout, 'perf', float)


@rfm.simple_test
class EESSI_ESPRESSO_P3M_IONIC_CRYSTALS(EESSI_ESPRESSO):
scale = parameter(filter_scales_P3M())
time_limit = '300m'

executable = 'python3 madelung.py'

default_weak_scaling_system_size = 6

@run_after('init')
def set_tag_ci(self):
""" Setting tests under CI tag. """
if SCALES[self.scale]['num_nodes'] < 2:
self.tags.add('CI')
log(f'tags set to {self.tags}')

self.tags.add('ionic_crystals_p3m')

@run_after('init')
def set_executable_opts(self):
"""Set executable opts based on device_type parameter"""
num_default = 0 # If this test already has executable opts, they must have come from the command line
hooks.check_custom_executable_opts(self, num_default=num_default)
# By default we run weak scaling since the strong scaling sizes need to change based on max node size and a
# corresponding min node size has to be chozen.
self.executable_opts += ['--size', str(self.default_weak_scaling_system_size), '--weak-scaling']
utils.log(f'executable_opts set to {self.executable_opts}')

@run_after('setup')
def set_mem(self):
""" Setting an extra job option of memory. Here the assumption made is that HPC systems will contain at
least 1 GB per core of memory."""
mem_required_per_node = self.num_tasks_per_node * 0.9
hooks.req_memory_per_node(test=self, app_mem_req=mem_required_per_node)

@deferrable
def assert_completion(self):
'''Check completion'''
cao = sn.extractsingle(r'^resulting parameters:.*cao: (?P<cao>\S+),', self.stdout, 'cao', int)
return (sn.assert_found(r'^Algorithm executed.', self.stdout) and cao)

@deferrable
def assert_convergence(self):
'''Check convergence'''
check_string = False
energy = 0.0
check_string = sn.assert_found(r'Final convergence met with tolerances:', self.stdout)
energy = sn.extractsingle(r'^\s+energy:\s+(?P<energy>\S+)', self.stdout, 'energy', float)
return (check_string and (energy != 0.0))


@rfm.simple_test
class EESSI_ESPRESSO_LJ_PARTICLES(EESSI_ESPRESSO):
scale = parameter(SCALES.keys())
time_limit = '300m'

executable = 'python3 lj.py'

@run_after('init')
def set_tag_ci(self):
""" Setting tests under CI tag. """
if SCALES[self.scale]['num_nodes'] < 2:
self.tags.add('CI')
log(f'tags set to {self.tags}')

self.tags.add('particles_lj')

@run_after('init')
def set_executable_opts(self):
"""Allow executable opts to be overwritten from command line"""
num_default = 0 # If this test already has executable opts, they must have come from the command line
hooks.check_custom_executable_opts(self, num_default=num_default)

@run_after('setup')
def set_mem(self):
""" Setting an extra job option of memory. Here the assumption made is that HPC systems will contain at
least 1 GB per core of memory."""
mem_required_per_node = self.num_tasks_per_node * 0.9 # TODO: figure out if this is also ok for lb use case
hooks.req_memory_per_node(test=self, app_mem_req=mem_required_per_node)

@deferrable
def assert_completion(self):
'''Check completion'''
return (sn.assert_found(r'^Algorithm executed.', self.stdout))

@deferrable
def assert_convergence(self):
'''Check convergence'''
check_string = False
energy = 0.0
check_string = sn.assert_found(r'Final convergence met with relative tolerances:', self.stdout)
energy = sn.extractsingle(r'^\s+sim_energy:\s+(?P<energy>\S+)', self.stdout, 'energy', float)
return (check_string and (energy != 0.0))

0 comments on commit f816f4e

Please sign in to comment.