-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #144 from satishskamath/espresso
Adding ESPResSo test PR
- Loading branch information
Showing
4 changed files
with
273 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
""" | ||
This module tests Espresso in available modules containing substring 'ESPResSo' which is different from Quantum | ||
Espresso. Tests included: | ||
- P3M benchmark - Ionic crystals | ||
- Weak scaling | ||
- Strong scaling Weak and strong scaling are options that are needed to be provided to the script and the system is | ||
either scaled based on number of cores or kept constant. | ||
""" | ||
|
||
import reframe as rfm | ||
import reframe.utility.sanity as sn | ||
|
||
from reframe.core.builtins import parameter, run_after # added only to make the linter happy | ||
from reframe.utility import reframe | ||
|
||
from eessi.testsuite import hooks, utils | ||
from eessi.testsuite.constants import * | ||
from eessi.testsuite.utils import find_modules, log | ||
|
||
|
||
def filter_scales_P3M(): | ||
""" | ||
Filtering function for filtering scales for P3M test. | ||
This is currently required because the 16 node test takes way too long and always fails due to time limit. | ||
Once a solution to mesh tuning algorithm is found, where we can specify the mesh sizes for a particular scale, | ||
this function can be removed. | ||
""" | ||
return [ | ||
k for (k, v) in SCALES.items() | ||
if v['num_nodes'] != 16 | ||
] | ||
|
||
|
||
@rfm.simple_test | ||
class EESSI_ESPRESSO_P3M_IONIC_CRYSTALS(rfm.RunOnlyRegressionTest): | ||
|
||
scale = parameter(filter_scales_P3M()) | ||
valid_prog_environs = ['default'] | ||
valid_systems = ['*'] | ||
time_limit = '300m' | ||
# Need to check if QuantumESPRESSO also gets listed. | ||
module_name = parameter(find_modules('ESPResSo')) | ||
# device type is parameterized for an impending CUDA ESPResSo module. | ||
device_type = parameter([DEVICE_TYPES[CPU]]) | ||
|
||
executable = 'python3 madelung.py' | ||
|
||
default_strong_scaling_system_size = 9 | ||
default_weak_scaling_system_size = 6 | ||
|
||
benchmark_info = parameter([ | ||
('mpi.ionic_crystals.p3m', 'p3m'), | ||
], fmt=lambda x: x[0], loggable=True) | ||
|
||
@run_after('init') | ||
def run_after_init(self): | ||
"""hooks to run after init phase""" | ||
# Filter on which scales are supported by the partitions defined in the ReFrame configuration | ||
hooks.filter_supported_scales(self) | ||
|
||
hooks.filter_valid_systems_by_device_type(self, required_device_type=self.device_type) | ||
|
||
hooks.set_modules(self) | ||
|
||
# Set scales as tags | ||
hooks.set_tag_scale(self) | ||
|
||
@run_after('init') | ||
def set_tag_ci(self): | ||
""" Setting tests under CI tag. """ | ||
if (self.benchmark_info[0] in ['mpi.ionic_crystals.p3m'] and SCALES[self.scale]['num_nodes'] < 2): | ||
self.tags.add('CI') | ||
log(f'tags set to {self.tags}') | ||
|
||
if (self.benchmark_info[0] == 'mpi.ionic_crystals.p3m'): | ||
self.tags.add('ionic_crystals_p3m') | ||
|
||
@run_after('init') | ||
def set_executable_opts(self): | ||
"""Set executable opts based on device_type parameter""" | ||
num_default = 0 # If this test already has executable opts, they must have come from the command line | ||
hooks.check_custom_executable_opts(self, num_default=num_default) | ||
if not self.has_custom_executable_opts: | ||
# By default we run weak scaling since the strong scaling sizes need to change based on max node size and a | ||
# corresponding min node size has to be chozen. | ||
self.executable_opts += ['--size', str(self.default_weak_scaling_system_size), '--weak-scaling'] | ||
utils.log(f'executable_opts set to {self.executable_opts}') | ||
|
||
@run_after('setup') | ||
def set_num_tasks_per_node(self): | ||
""" Setting number of tasks per node and cpus per task in this function. This function sets num_cpus_per_task | ||
for 1 node and 2 node options where the request is for full nodes.""" | ||
hooks.assign_tasks_per_compute_unit(self, COMPUTE_UNIT[CPU]) | ||
|
||
@run_after('setup') | ||
def set_mem(self): | ||
""" Setting an extra job option of memory. Here the assumption made is that HPC systems will contain at | ||
least 1 GB per core of memory.""" | ||
mem_required_per_node = self.num_tasks_per_node * 0.9 | ||
hooks.req_memory_per_node(test=self, app_mem_req=mem_required_per_node) | ||
|
||
@deferrable | ||
def assert_completion(self): | ||
'''Check completion''' | ||
cao = sn.extractsingle(r'^resulting parameters:.*cao: (?P<cao>\S+),', self.stdout, 'cao', int) | ||
return (sn.assert_found(r'^Algorithm executed.', self.stdout) and cao) | ||
|
||
@deferrable | ||
def assert_convergence(self): | ||
'''Check convergence''' | ||
check_string = sn.assert_found(r'Final convergence met with tolerances:', self.stdout) | ||
energy = sn.extractsingle(r'^\s+energy:\s+(?P<energy>\S+)', self.stdout, 'energy', float) | ||
return (check_string and (energy != 0.0)) | ||
|
||
@sanity_function | ||
def assert_sanity(self): | ||
'''Check all sanity criteria''' | ||
return sn.all([ | ||
self.assert_completion(), | ||
self.assert_convergence(), | ||
]) | ||
|
||
@performance_function('s/step') | ||
def perf(self): | ||
return sn.extractsingle(r'^Performance:\s+(?P<perf>\S+)', self.stdout, 'perf', float) |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
# | ||
# Copyright (C) 2013-2024 The ESPResSo project | ||
# | ||
# This file is part of ESPResSo. | ||
# | ||
# ESPResSo is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# ESPResSo is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU General Public License | ||
# along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
# | ||
|
||
import espressomd | ||
import espressomd.version | ||
import espressomd.electrostatics | ||
import argparse | ||
import time | ||
import numpy as np | ||
|
||
parser = argparse.ArgumentParser(description="Benchmark P3M simulations.") | ||
parser.add_argument("--size", metavar="S", action="store", | ||
default=9, required=False, type=int, | ||
help="Problem size, such that the number of particles N is " | ||
"equal to (2*S)^2; with --weak-scaling this number N " | ||
"is multiplied by the number of cores!") | ||
parser.add_argument("--gpu", action=argparse.BooleanOptionalAction, | ||
default=False, required=False, help="Use GPU implementation") | ||
parser.add_argument("--topology", metavar=("X", "Y", "Z"), nargs=3, action="store", | ||
default=None, required=False, type=int, help="Cartesian topology") | ||
group = parser.add_mutually_exclusive_group() | ||
group.add_argument("--weak-scaling", action="store_true", | ||
help="Weak scaling benchmark (Gustafson's law: constant work per core)") | ||
group.add_argument("--strong-scaling", action="store_true", | ||
help="Strong scaling benchmark (Amdahl's law: constant total work)") | ||
args = parser.parse_args() | ||
|
||
|
||
def get_reference_values_per_ion(base_vector): | ||
madelung_constant = -1.74756459463318219 | ||
base_tensor = base_vector * np.eye(3) | ||
ref_energy = madelung_constant | ||
ref_pressure = madelung_constant * base_tensor / np.trace(base_tensor) | ||
return ref_energy, ref_pressure | ||
|
||
|
||
def get_normalized_values_per_ion(system): | ||
energy = system.analysis.energy()["coulomb"] | ||
p_scalar = system.analysis.pressure()["coulomb"] | ||
p_tensor = system.analysis.pressure_tensor()["coulomb"] | ||
N = len(system.part) | ||
V = system.volume() | ||
return 2. * energy / N, 2. * p_scalar * V / N, 2. * p_tensor * V / N | ||
|
||
|
||
# initialize system | ||
system = espressomd.System(box_l=[100., 100., 100.]) | ||
system.time_step = 0.01 | ||
system.cell_system.skin = 0.4 | ||
|
||
# set MPI Cartesian topology | ||
node_grid = system.cell_system.node_grid.copy() | ||
n_cores = int(np.prod(node_grid)) | ||
if args.topology: | ||
system.cell_system.node_grid = node_grid = args.topology | ||
|
||
# place ions on a cubic lattice | ||
base_vector = np.array([1., 1., 1.]) | ||
lattice_size = 3 * [2 * args.size] | ||
if args.weak_scaling: | ||
lattice_size = np.multiply(lattice_size, node_grid) | ||
system.box_l = np.multiply(lattice_size, base_vector) | ||
for var_j in range(lattice_size[0]): | ||
for var_k in range(lattice_size[1]): | ||
for var_l in range(lattice_size[2]): | ||
_ = system.part.add(pos=np.multiply([var_j, var_k, var_l], base_vector), | ||
q=(-1.)**(var_j + var_k + var_l), fix=3 * [True]) | ||
|
||
# setup P3M algorithm | ||
algorithm = espressomd.electrostatics.P3M | ||
if args.gpu: | ||
algorithm = espressomd.electrostatics.P3MGPU | ||
solver = algorithm(prefactor=1., accuracy=1e-6) | ||
if (espressomd.version.major(), espressomd.version.minor()) == (4, 2): | ||
system.actors.add(solver) | ||
else: | ||
system.electrostatics.solver = solver | ||
|
||
|
||
print("Algorithm executed. \n") | ||
|
||
# Old rtol_pressure = 2e-5 | ||
# This resulted in failures especially at high number of nodes therefore increased | ||
# to a larger value. | ||
|
||
atol_energy = atol_pressure = 1e-12 | ||
atol_forces = 1e-5 | ||
atol_abs_forces = 2e-6 | ||
|
||
rtol_energy = 5e-6 | ||
rtol_pressure = 1e-4 | ||
rtol_forces = 0. | ||
rtol_abs_forces = 0. | ||
# run checks | ||
print("Executing sanity checks...\n") | ||
forces = np.copy(system.part.all().f) | ||
energy, p_scalar, p_tensor = get_normalized_values_per_ion(system) | ||
ref_energy, ref_pressure = get_reference_values_per_ion(base_vector) | ||
np.testing.assert_allclose(energy, ref_energy, atol=atol_energy, rtol=rtol_energy) | ||
np.testing.assert_allclose(p_scalar, np.trace(ref_pressure) / 3., | ||
atol=atol_pressure, rtol=rtol_pressure) | ||
np.testing.assert_allclose(p_tensor, ref_pressure, atol=atol_pressure, rtol=rtol_pressure) | ||
np.testing.assert_allclose(forces, 0., atol=atol_forces, rtol=rtol_forces) | ||
np.testing.assert_allclose(np.median(np.abs(forces)), 0., atol=atol_abs_forces, rtol=rtol_abs_forces) | ||
|
||
print("Final convergence met with tolerances: \n\ | ||
energy: ", atol_energy, "\n\ | ||
p_scalar: ", atol_pressure, "\n\ | ||
p_tensor: ", atol_pressure, "\n\ | ||
forces: ", atol_forces, "\n\ | ||
abs_forces: ", atol_abs_forces, "\n") | ||
|
||
print("Sampling runtime...\n") | ||
# sample runtime | ||
n_steps = 10 | ||
timings = [] | ||
for _ in range(10): | ||
tick = time.time() | ||
system.integrator.run(n_steps) | ||
tock = time.time() | ||
timings.append((tock - tick) / n_steps) | ||
|
||
print("10 steps executed...\n") | ||
# write results to file | ||
header = '"mode","cores","mpi.x","mpi.y","mpi.z","particles","mean","std"\n' | ||
report = f'''"{"weak scaling" if args.weak_scaling else "strong scaling"}",\ | ||
{n_cores},{node_grid[0]},{node_grid[1]},{node_grid[2]},{len(system.part)},\ | ||
{np.mean(timings):.3e},{np.std(timings,ddof=1):.3e}\n''' | ||
print(header) | ||
print(report) | ||
|
||
print(f"Performance: {np.mean(timings):.3e} \n") |