-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #155 from satishskamath/espresso_lj
Adding LJ test within ESPRESSO
- Loading branch information
Showing
2 changed files
with
273 additions
and
41 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# | ||
# Copyright (C) 2018-2024 The ESPResSo project | ||
# | ||
# This file is part of ESPResSo. | ||
# | ||
# ESPResSo is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# ESPResSo is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU General Public License | ||
# along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
# | ||
|
||
import argparse | ||
import time | ||
import espressomd | ||
import numpy as np | ||
|
||
required_features = ["LENNARD_JONES"] | ||
espressomd.assert_features(required_features) | ||
|
||
parser = argparse.ArgumentParser(description="Benchmark LJ simulations.") | ||
parser.add_argument("--particles-per-core", metavar="N", action="store", | ||
type=int, default=2000, required=False, | ||
help="Number of particles in the simulation box") | ||
parser.add_argument("--sample-size", metavar="S", action="store", | ||
type=int, default=30, required=False, | ||
help="Sample size") | ||
parser.add_argument("--volume-fraction", metavar="FRAC", action="store", | ||
type=float, default=0.50, required=False, | ||
help="Fraction of the simulation box volume occupied by " | ||
"particles (range: [0.01-0.74], default: 0.50)") | ||
args = parser.parse_args() | ||
|
||
# process and check arguments | ||
measurement_steps = 100 | ||
if args.particles_per_core < 16000: | ||
measurement_steps = 200 | ||
if args.particles_per_core < 10000: | ||
measurement_steps = 500 | ||
if args.particles_per_core < 5000: | ||
measurement_steps = 1000 | ||
if args.particles_per_core < 1000: | ||
measurement_steps = 2000 | ||
if args.particles_per_core < 600: | ||
measurement_steps = 4000 | ||
if args.particles_per_core < 260: | ||
measurement_steps = 6000 | ||
assert args.volume_fraction > 0., "volume_fraction must be a positive number" | ||
assert args.volume_fraction < np.pi / (3. * np.sqrt(2.)), \ | ||
"volume_fraction exceeds the physical limit of sphere packing (~0.74)" | ||
|
||
# make simulation deterministic | ||
np.random.seed(42) | ||
|
||
|
||
def get_reference_values_per_atom(x): | ||
# result of a polynomial fit in the range from 0.01 to 0.55 | ||
energy = 54.2 * x**3 - 23.8 * x**2 + 4.6 * x - 0.09 | ||
pressure = 377. * x**3 - 149. * x**2 + 32.2 * x - 0.58 | ||
return energy, pressure | ||
|
||
|
||
def get_normalized_values_per_atom(system): | ||
energy = system.analysis.energy()["non_bonded"] | ||
pressure = system.analysis.pressure()["non_bonded"] | ||
N = len(system.part) | ||
V = system.volume() | ||
return 2. * energy / N, 2. * pressure * V / N | ||
|
||
|
||
system = espressomd.System(box_l=[10., 10., 10.]) | ||
system.time_step = 0.01 | ||
system.cell_system.skin = 0.5 | ||
|
||
lj_eps = 1.0 # LJ epsilon | ||
lj_sig = 1.0 # particle diameter | ||
lj_cut = lj_sig * 2**(1. / 6.) # cutoff distance | ||
|
||
n_proc = system.cell_system.get_state()["n_nodes"] | ||
n_part = n_proc * args.particles_per_core | ||
node_grid = np.array(system.cell_system.node_grid) | ||
# volume of N spheres with radius r: N * (4/3*pi*r^3) | ||
box_v = args.particles_per_core * 4. / 3. * \ | ||
np.pi * (lj_sig / 2.)**3 / args.volume_fraction | ||
# box_v = (x * n) * x * x for a column | ||
system.box_l = float((box_v)**(1. / 3.)) * node_grid | ||
assert np.abs(n_part * 4. / 3. * np.pi * (lj_sig / 2.)**3 / np.prod(system.box_l) - args.volume_fraction) < 0.1 | ||
|
||
system.non_bonded_inter[0, 0].lennard_jones.set_params( | ||
epsilon=lj_eps, sigma=lj_sig, cutoff=lj_cut, shift="auto") | ||
|
||
system.part.add(pos=np.random.random((n_part, 3)) * system.box_l) | ||
|
||
# energy minimization | ||
max_steps = 1000 | ||
# particle forces for volume fractions between 0.1 and 0.5 follow a polynomial | ||
target_f_max = 20. * args.volume_fraction**2 | ||
system.integrator.set_steepest_descent( | ||
f_max=target_f_max, gamma=0.001, max_displacement=0.01 * lj_sig) | ||
n_steps = system.integrator.run(max_steps) | ||
assert n_steps < max_steps, f'''energy minimization failed: \ | ||
E = {system.analysis.energy()["total"] / len(system.part):.3g} per particle, \ | ||
f_max = {np.max(np.linalg.norm(system.part.all().f, axis=1)):.2g}, \ | ||
target f_max = {target_f_max:.2g}''' | ||
|
||
# warmup | ||
system.integrator.set_vv() | ||
system.thermostat.set_langevin(kT=1.0, gamma=1.0, seed=42) | ||
|
||
# tuning and equilibration | ||
min_skin = 0.2 | ||
max_skin = 1.0 | ||
print("Tune skin: {:.3f}".format(system.cell_system.tune_skin( | ||
min_skin=min_skin, max_skin=max_skin, tol=0.05, int_steps=100))) | ||
print("Equilibration") | ||
system.integrator.run(min(5 * measurement_steps, 60000)) | ||
print("Tune skin: {:.3f}".format(system.cell_system.tune_skin( | ||
min_skin=min_skin, max_skin=max_skin, tol=0.05, int_steps=100))) | ||
print("Equilibration") | ||
system.integrator.run(min(10 * measurement_steps, 60000)) | ||
|
||
print("Sampling runtime...") | ||
timings = [] | ||
energies = [] | ||
pressures = [] | ||
for i in range(args.sample_size): | ||
tick = time.time() | ||
system.integrator.run(measurement_steps) | ||
tock = time.time() | ||
t = (tock - tick) / measurement_steps | ||
timings.append(t) | ||
energy, pressure = get_normalized_values_per_atom(system) | ||
energies.append(energy) | ||
pressures.append(pressure) | ||
|
||
sim_energy = np.mean(energies) | ||
sim_pressure = np.mean(pressures) | ||
ref_energy, ref_pressure = get_reference_values_per_atom(args.volume_fraction) | ||
|
||
print("Algorithm executed. \n") | ||
np.testing.assert_allclose(sim_energy, ref_energy, atol=0., rtol=0.1) | ||
np.testing.assert_allclose(sim_pressure, ref_pressure, atol=0., rtol=0.1) | ||
|
||
print("Final convergence met with relative tolerances: \n\ | ||
sim_energy: ", 0.1, "\n\ | ||
sim_pressure: ", 0.1, "\n") | ||
|
||
header = '"mode","cores","mpi.x","mpi.y","mpi.z","particles","volume_fraction","mean","std"' | ||
report = f'''"weak scaling",{n_proc},{node_grid[0]},{node_grid[1]},\ | ||
{node_grid[2]},{len(system.part)},{args.volume_fraction:.4f},\ | ||
{np.mean(timings):.3e},{np.std(timings,ddof=1):.3e}''' | ||
print(header) | ||
print(report) | ||
print(f"Performance: {np.mean(timings):.3e}") |