Skip to content

Commit

Permalink
Update Docs.
Browse files Browse the repository at this point in the history
  • Loading branch information
zhangxjohn committed Jul 19, 2022
1 parent 13c8229 commit 784a6fb
Show file tree
Hide file tree
Showing 8 changed files with 101 additions and 33 deletions.
2 changes: 1 addition & 1 deletion docs/en_US/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
author = 'DataCanvas.com'

# The full version, including alpha/beta/rc tags
release = '0.1.0'
release = '0.1.3'


# -- General configuration ---------------------------------------------------
Expand Down
15 changes: 3 additions & 12 deletions docs/en_US/source/contents/0600_custom_functions.rst
Original file line number Diff line number Diff line change
Expand Up @@ -91,9 +91,6 @@ HyperTS provides various algorithms with default search space for every mode. Mo

By setting the argument ``search_space``, users could define their own search space. The instructions and an example are given below to modify the ``StatsForecastSearchSpace``.

- Mandatory! Describe the exact name of the task. For instance, ``task='univariate-forecast'``;
- Mandatory! Assign the name of the ``timestamp`` column;
- Mandatory! If have the covariables, describe them clearly. For instance, ``covariables={xxx: xxx, ...}``;
- Set the argument as false to disable a certain algorithm. For instance, ``enable_arima=False``;
- Change the initial parameters of a certain algorithm by function ``prophet_init_kwargs={xxx:xxx, ...}``;
- Import the argument ``Choice``, ``Int`` ``Real`` from ``hypernets.core.search_space`` could define the parameters with specific options. For instance, ``Choice`` supports the boolean data type. ``Real`` supports the floating data type.
Expand All @@ -106,11 +103,8 @@ Code example:
from hypernets.core.search_space import Choice, Int, Real
from hyperts.framework.search_space.macro_search_space import StatsForecastSearchSpace
custom_search_space = StatsForecastSearchSpace(task='univariate-forecast',
timestamp='TimeStamp',
covariables=['HourSin', 'WeekCos', 'CBWD'],
enable_arima=False,
prophet_init_kwargs={
custom_search_space = StatsForecastSearchSpace(enable_arima=False,
prophet_init_kwargs={
'seasonality_mode': 'multiplicative',
'daily_seasonality': Choice([True, False]),
'n_changepoints': Int(10, 50, step=10),
Expand Down Expand Up @@ -374,10 +368,7 @@ Add the estimator to the search space, in which the hyperparameters also could b
df = load_network_traffic(univariate=True)
train_data, test_data = train_test_split(df, test_size=168, shuffle=False)
custom_search_space = DLForecastSearchSpacePlusTransformer(task='univariate-forecast',
timestamp='TimeStamp',
covariables=['HourSin', 'WeekCos', 'CBWD'],
metrics=['mape'])
custom_search_space = DLForecastSearchSpacePlusTransformer()
experiment = make_experiment(train_data,
task='univariate-forecast',
Expand Down
9 changes: 8 additions & 1 deletion docs/en_US/source/contents/0700_models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -155,4 +155,11 @@ For more information, please refer to the paper `Modeling Long- and Short-Term T

Neural Architecture Search
*************
...
Since AlexNet won the 2012 ImageNet competition, deep learning has made breakthroughs in many challenging tasks and fields. In addition to AlexNet,
e.g., VGG, Inception, ResNet, Transformer, GPT and so on have been proposed and widely used in industry and academia. And then, behind all these great networks,
it is the crystallization of the experience of countless human experts. Consequently, neural architecture search (NAS) has emerged as a promising tool to alleviate human efforts in this trial-and-error design process.

HyperTS relies on the basic capabilities provided by Hypernets (``Hpyer Model`` + ``Search Strategy`` + ``Estimation Strategy``), to build ``Search Space`` for time series tasks based on NAS powerful expression capabilities.

.. tip::
NAS is applied to uni/multi-variate forecasting and regression.
38 changes: 37 additions & 1 deletion docs/en_US/source/contents/0800_release_note.rst
Original file line number Diff line number Diff line change
Expand Up @@ -79,4 +79,40 @@ Details of the HypertTS update are as follows:

- Optimizes search space and architecture.

- Fixes some bugs.
- Fixes some bugs.


Version 0.1.3
******************

Details of the HypertTS update are as follows:

- Tuning search space hyperparameters;

- Added report_best_trial_params;

- Fixed ARIMA to be compatible with version 0.12.1 and above;

- Fixed the pt issue of LSTNet;

- Simplified custom search space, task, timestamp, covariables and metircs can not be passed;

- Added OutliersTransformer, supported dynamic handling of outliers;

- Adjusted final train processing - lr, batch_size, epcochs and so on;

- Added time series meta-feature extractor;

- Added Time2Vec, RevIN, etc. layers;

- Added N-Beats time series forecasting model;

- Added InceptionTime time series classification model;

- Supported dynamic downsampling for time series forecasting;

- Refactored positive label inference method;

- Added neural architecture search mode;

- Fixed some known issues.
2 changes: 1 addition & 1 deletion docs/zh_CN/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
author = 'DataCanvas.com'

# The full version, including alpha/beta/rc tags
release = '0.1.0'
release = '0.1.3'


# -- General configuration ---------------------------------------------------
Expand Down
16 changes: 3 additions & 13 deletions docs/zh_CN/source/contents/0600_user_defined.rst
Original file line number Diff line number Diff line change
Expand Up @@ -93,10 +93,6 @@ HyperTS针对不同的模式内置了丰富的建模算法, 例如:

假如现在我们想修改预测任务下的统计模式的搜索空间, 即 ``StatsForecastSearchSpace``, 您可以做如下操作:

- 详细指定任务类型 ``task``, 否则无法判断是单变量预测还是多变量预测任务;
- 指定 ``timestamp`` 列名;
- 如果数据存在协变量, 请设置参数 ``covariables={xxx: xxx, ...}``;
- **以上三步请严格遵守, 否则自定义失败!**
- 如果想禁止某个算法, 不进行搜索, 可以设置参数为False, 例如 ``enable_arima=False``;
- 如果想更改某个算法的搜索空间参数初始化,可以传递参数 ``xxx_init_kwargs={xxx:xxx, ...}``;
- 如果希望自定义的参数是可搜索的, 您可以使用 ``hypernets.core.search_space`` 中的 ``Choice``, ``Int`` 及 ``Real``。其中, ``Choice`` 支持离散值, ``Int`` 支持整数连续值, ``Real`` 支持浮点数连续值。详情可参考 `Search Space <https://github.com/DataCanvasIO/Hypernets/blob/master/hypernets/core/search_space.py>`_。
Expand All @@ -108,11 +104,8 @@ HyperTS针对不同的模式内置了丰富的建模算法, 例如:
from hypernets.core.search_space import Choice, Int, Real
from hyperts.framework.search_space.macro_search_space import StatsForecastSearchSpace
custom_search_space = StatsForecastSearchSpace(task='univariate-forecast',
timestamp='TimeStamp',
covariables=['HourSin', 'WeekCos', 'CBWD'],
enable_arima=False,
prophet_init_kwargs={
custom_search_space = StatsForecastSearchSpace(enable_arima=False,
prophet_init_kwargs={
'seasonality_mode': 'multiplicative',
'daily_seasonality': Choice([True, False]),
'n_changepoints': Int(10, 50, step=10),
Expand Down Expand Up @@ -378,10 +371,7 @@ HyperTS针对不同的模式内置了丰富的建模算法, 例如:
df = load_network_traffic(univariate=True)
train_data, test_data = train_test_split(df, test_size=168, shuffle=False)
custom_search_space = DLForecastSearchSpacePlusTransformer(task='univariate-forecast',
timestamp='TimeStamp',
covariables=['HourSin', 'WeekCos', 'CBWD'],
metrics=['mape'])
custom_search_space = DLForecastSearchSpacePlusTransformer()
experiment = make_experiment(train_data,
task='univariate-forecast',
Expand Down
12 changes: 10 additions & 2 deletions docs/zh_CN/source/contents/0700_models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -134,10 +134,18 @@ LSTNet全称为长短时序网络(Long-and Short-term Time-series network, LSTNe
详情可参看: `Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks <https://arxiv.org/abs/1703.07015>`_

.. tip::
适用范围: 单/多变量时序预测,回归。
适用范围: 单/多变量时序预测, 回归。

--------

神经架构搜索
*************
...
自AlexNet在2012年的ImageNet竞赛中获得冠军, 深度学习在许多具有挑战性的任务及领域取得了突破性的进展。除了AlexNet网络外,
比如VGG,Inception, ResNet, Transformer, GPT等也先后被提出并得到工业界及学术界广泛的应用。然后, 这众多优秀网络的背后,
凝聚的是无数人类专家的经验结晶。因此, 神经体系结构搜索(NAS)已经成为一种有希望的工具,以减轻人类在这种试错设计过程中的努力。

HyperTS依托Hypernets提供的基础能力(``Hpyer Model`` + ``Search Strategy`` + ``Estimation Strategy``), 构建了基于时间
序列的 ``Search Space``, 为时间序列任务赋予NAS强大的表达能力。

.. tip::
适用范围: 单/多变量时序预测, 回归。
40 changes: 38 additions & 2 deletions docs/zh_CN/source/contents/0800_release_note.rst
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ HyperTS是一款涵盖自动机器学习(AutoML)与自动深度学习(AutoDL)的
版本 0.1.2.1
**************

HyperTS本次更新细节如下
HyperTS本次更新细节如下:

- 新增交叉验证策略;

Expand All @@ -52,4 +52,40 @@ HyperTS本次更新细节如下:

- 支持傅里叶时序周期推断;

- 优化搜索空间及参数。
- 优化搜索空间及参数。


版本 0.1.3
**************

HyperTS本次更新细节如下:

- 调整搜索空间超参数;

- 增加实验执行结束报告最佳试验的参数;

- 修复ARIMA以兼容0.12.1及以上版本;

- 修复LSTNet的pt的问题;

- 简化自定义搜索空间, 可不传参task, timestamp, covariables和metircs;

- 新增 OutliersTransformer, 支持动态处理异常值;

- 调整finaltrain - lr, batch_size, epcochs等;

- 新增时间序列元特征提取器;

- 新增Time2Vec、RevIN等时间处理层;

- 新增N-Beats时序预测模型;

- 新增InceptionTime时序分类模型;

- 支持时序预测动态下采样;

- 重构正标签推断方法;

- 新增神经架构搜索模型;

- 修复了一些已知问题。

0 comments on commit 784a6fb

Please sign in to comment.