Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for plastic models #4

Open
wants to merge 30 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
30 commits
Select commit Hold shift + click to select a range
408a546
add initial support for plastic models
shadisharba Sep 23, 2022
825d54d
Add first version of mode identification algorithm
juliusgh May 9, 2023
b594c09
Add first version of mode processing
juliusgh May 9, 2023
57ca4fe
Documentation
juliusgh May 10, 2023
2ab3ef8
Documentation
juliusgh May 10, 2023
59cc1fd
Update mode identification algorithm
juliusgh May 10, 2023
e1361fe
Add dummy data for mode processing
juliusgh May 10, 2023
8f3a821
test on plastic striped_normal_4x4x4 RVE
shadisharba Jun 8, 2023
97aa0df
testing
juliusgh May 27, 2023
623397e
test on plastic striped_normal_4x4x4 RVE
juliusgh Jun 9, 2023
13fcd2c
Check plastic modes normalization in verify_data
juliusgh Jun 10, 2023
409845d
Implement mode identification
juliusgh Jun 10, 2023
adf5c64
Change order of thermal and plastic modes
juliusgh Jun 11, 2023
a70d657
Save tabular data
juliusgh Jun 11, 2023
1df632e
Delete h5 group if it already exists
juliusgh Jun 11, 2023
2482bb8
Change computation of ntfa matrices
juliusgh Jun 12, 2023
9690cea
Add hardening to material parameters
juliusgh Jun 13, 2023
cee36ba
Compute NTFA matrices
juliusgh Jun 13, 2023
4b43c78
Compute NTFA matrices
juliusgh Jun 13, 2023
149493e
Use analytic expression for thermal strain
juliusgh Jun 15, 2023
6187b63
Extend tabular data computation
juliusgh Jun 15, 2023
91fd0cf
Tabular data test case
juliusgh Jul 10, 2023
36212b0
Bugfix in computation of ntfa system matrices
juliusgh Jul 16, 2023
c96a415
Bugfix in ntfa matrices, code cleanup
juliusgh Jul 16, 2023
cf28738
Documentation
juliusgh Jul 16, 2023
2b83e26
Documentation
juliusgh Oct 25, 2024
0e0ab81
Code cleanup
juliusgh Oct 25, 2024
64d2bf6
Code cleanup
juliusgh Oct 25, 2024
82cc834
Code cleanup
juliusgh Oct 25, 2024
187c884
Update examples
juliusgh Dec 9, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion eg0_affine_thermoelastic_solver.py → eg00_affine_thermoelastic_solver.py
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
from microstructures import *
from utilities import verify_data, read_h5

for microstructure in microstructures:
for microstructure in microstructures[-9:]:

file_name, data_path, temp1, temp2 = itemgetter('file_name', 'data_path', 'temp1', 'temp2')(microstructure)

Expand All @@ -17,6 +17,12 @@

mesh, samples = read_h5(file_name, data_path, temperatures)

# print(mesh.keys())
# print(samples[0].keys())
print('strain localication shape:', samples[0]['strain_localization'].shape)
print('material stiffness shape:', samples[0]['mat_stiffness'].shape)
print('plastic modes shape:', samples[0]['plastic_modes'].shape)

for sample in samples:
verify_data(mesh, sample)

Expand Down
2 changes: 2 additions & 0 deletions eg1_approximation_of_mat_properties.py → eg01_approximation_of_mat_properties.py
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
from material_parameters import *
from optimize_alpha import naive, opt1, opt2, opt4
from utilities import plot_and_save, cm
from matplotlib import rc
rc('text', usetex=True)

temp1 = 300
temp2 = 1300
Expand Down
39 changes: 25 additions & 14 deletions eg2_compare_approximations.py → eg02_compare_approximations.py
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,11 @@

from interpolate_fluctuation_modes import interpolate_fluctuation_modes
from microstructures import *
from material_parameters import *
from optimize_alpha import opt1, opt2, opt4, naive
from utilities import read_h5, construct_stress_localization, volume_average, compute_residual_efficient
from matplotlib import rc
rc('text', usetex=True)

np.random.seed(0)
file_name, data_path, temp1, temp2, n_tests, sampling_alphas = itemgetter('file_name', 'data_path', 'temp1', 'temp2', 'n_tests',
Expand All @@ -26,11 +29,11 @@
strain_dof = mesh['strain_dof']
global_gradient = mesh['global_gradient']
n_gp = mesh['n_integration_points']
n_modes = ref[0]['strain_localization'].shape[-1]
n_modes = ref[0]['plastic_modes'].shape[-1]

_, samples = read_h5(file_name, data_path, [temp1, temp2], get_mesh=False)

strains = np.random.normal(size=(n_loading_directions, mesh['strain_dof']))
strains = np.random.normal(size=(n_loading_directions, strain_dof))
strains /= la.norm(strains, axis=1)[:, None]

n_approaches = 5
Expand All @@ -54,38 +57,46 @@
Eref = ref[idx]['strain_localization']
ref_C = ref[idx]['mat_stiffness']
ref_eps = ref[idx]['mat_thermal_strain']
ref_C_ = np.stack(([stiffness_cu(temperature), stiffness_wsc(temperature)]))
ref_eps_ = np.expand_dims(np.stack(([thermal_strain_cu(temperature), thermal_strain_wsc(temperature)])), axis=2)
print(np.linalg.norm(ref_C - ref_C_), np.linalg.norm(ref_eps - ref_eps_))
plastic_modes = ref[idx]['plastic_modes']
normalization_factor_mech = ref[idx]['normalization_factor_mech']

Sref = construct_stress_localization(Eref, ref_C, ref_eps, mat_id, n_gauss, strain_dof)
Sref = construct_stress_localization(Eref, ref_C, ref_eps, plastic_modes, mat_id, n_gauss, strain_dof)
effSref = volume_average(Sref)

# interpolated quantities using an explicit interpolation scheme with one DOF
approx_C, approx_eps = naive(alpha, sampling_C, sampling_eps, ref_C, ref_eps)
Enaive = interpolate_temp(E0, E1)
Snaive = construct_stress_localization(Enaive, ref_C, ref_eps, mat_id, n_gauss, strain_dof)
Snaive = construct_stress_localization(Enaive, ref_C, ref_eps, plastic_modes, mat_id, n_gauss, strain_dof)
effSnaive = volume_average(Snaive)

# interpolated quantities using an explicit interpolation scheme with one DOF
Eopt0, _ = interpolate_fluctuation_modes(E01, approx_C, approx_eps, mat_id, n_gauss, strain_dof, n_modes, n_gp)
Sopt0 = construct_stress_localization(Eopt0, ref_C, ref_eps, mat_id, n_gauss, strain_dof)
Eopt0, _ = interpolate_fluctuation_modes(E01, approx_C, approx_eps, plastic_modes, mat_id, n_gauss, strain_dof, n_modes,
n_gp)
Sopt0 = construct_stress_localization(Eopt0, ref_C, ref_eps, plastic_modes, mat_id, n_gauss, strain_dof)
effSopt0 = volume_average(Sopt0)

# interpolated quantities using an implicit interpolation scheme with one DOF
approx_C, approx_eps = opt1(sampling_C, sampling_eps, ref_C, ref_eps)
Eopt1, _ = interpolate_fluctuation_modes(E01, approx_C, approx_eps, mat_id, n_gauss, strain_dof, n_modes, n_gp)
Sopt1 = construct_stress_localization(Eopt1, ref_C, ref_eps, mat_id, n_gauss, strain_dof)
Eopt1, _ = interpolate_fluctuation_modes(E01, approx_C, approx_eps, plastic_modes, mat_id, n_gauss, strain_dof, n_modes,
n_gp)
Sopt1 = construct_stress_localization(Eopt1, ref_C, ref_eps, plastic_modes, mat_id, n_gauss, strain_dof)
effSopt1 = volume_average(Sopt1)

# interpolated quantities using an implicit interpolation scheme with two DOF
approx_C, approx_eps = opt2(sampling_C, sampling_eps, ref_C, ref_eps)
Eopt2, _ = interpolate_fluctuation_modes(E01, approx_C, approx_eps, mat_id, n_gauss, strain_dof, n_modes, n_gp)
Sopt2 = construct_stress_localization(Eopt2, ref_C, ref_eps, mat_id, n_gauss, strain_dof)
Eopt2, _ = interpolate_fluctuation_modes(E01, approx_C, approx_eps, plastic_modes, mat_id, n_gauss, strain_dof, n_modes,
n_gp)
Sopt2 = construct_stress_localization(Eopt2, ref_C, ref_eps, plastic_modes, mat_id, n_gauss, strain_dof)
effSopt2 = volume_average(Sopt2)

# interpolated quantities using an implicit interpolation scheme with four DOF
approx_C, approx_eps = opt4(sampling_C, sampling_eps, ref_C, ref_eps)
Eopt4, _ = interpolate_fluctuation_modes(E01, approx_C, approx_eps, mat_id, n_gauss, strain_dof, n_modes, n_gp)
Sopt4 = construct_stress_localization(Eopt4, ref_C, ref_eps, mat_id, n_gauss, strain_dof)
Eopt4, _ = interpolate_fluctuation_modes(E01, approx_C, approx_eps, plastic_modes, mat_id, n_gauss, strain_dof, n_modes,
n_gp)
Sopt4 = construct_stress_localization(Eopt4, ref_C, ref_eps, plastic_modes, mat_id, n_gauss, strain_dof)
effSopt4 = volume_average(Sopt4)

err = lambda x, y: np.mean(la.norm(x - y, axis=(-1, -2)) / la.norm(y, axis=(-1, -2))) * 100
Expand All @@ -97,7 +108,7 @@
err(effSopt2, effSref), err(effSopt4, effSref)]

for strain_idx, strain in enumerate(strains):
zeta = np.hstack((strain, 1))
zeta = np.hstack((strain, 1, np.ones(plastic_modes.shape[-1])))

eff_stress_ref = effSref @ zeta
err_eff_stress[:, idx * n_loading_directions + strain_idx] = \
Expand All @@ -112,7 +123,7 @@
stress_opt4 = np.einsum('ijk,k', Sopt4, zeta, optimize='optimal')

residuals = compute_residual_efficient([stress_naive, stress_opt0, stress_opt1, stress_opt2, stress_opt4],
mesh['global_gradient'])
global_gradient)

err_f[:, idx * n_loading_directions + strain_idx] = la.norm(residuals, np.inf, axis=0) / normalization_factor_mech * 100

Expand Down
23 changes: 15 additions & 8 deletions eg3_hierarchical_sampling.py → eg03_hierarchical_sampling.py
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,12 @@
from optimize_alpha import opt4
from utilities import read_h5, construct_stress_localization, volume_average, compute_residual_efficient, \
compute_err_indicator_efficient
from matplotlib import rc
rc('text', usetex=True)

np.random.seed(0)
file_name, data_path, temp1, temp2, n_tests, sampling_alphas = itemgetter('file_name', 'data_path', 'temp1', 'temp2', 'n_tests',
'sampling_alphas')(microstructures[6])
'sampling_alphas')(microstructures[0])
print(file_name, '\t', data_path)

n_loading_directions = 1
Expand All @@ -28,7 +30,7 @@
global_gradient = mesh['global_gradient']
n_gp = mesh['n_integration_points']
n_phases = len(np.unique(mat_id))
n_modes = ref[0]['strain_localization'].shape[-1]
n_modes = ref[0]['plastic_modes'].shape[-1]

strains = np.random.normal(size=(n_loading_directions, strain_dof))
strains /= la.norm(strains, axis=1)[:, None]
Expand Down Expand Up @@ -60,22 +62,27 @@
sampling_eps = np.stack((samples[id0]['mat_thermal_strain'], samples[id1]['mat_thermal_strain'])).transpose([1, 0, 2, 3])

# reference values
Eref = ref[idx]['strain_localization']
ref_C = ref[idx]['mat_stiffness']
ref_eps = ref[idx]['mat_thermal_strain']
plastic_modes = ref[idx]['plastic_modes']
normalization_factor_mech = ref[idx]['normalization_factor_mech']
effSref = np.vstack((ref[idx]['eff_stiffness'], -ref[idx]['eff_stiffness'] @ ref[idx]['eff_thermal_strain'])).T
Sref = construct_stress_localization(Eref, ref_C, ref_eps, plastic_modes, mat_id, n_gauss, strain_dof)
effSref = volume_average(Sref)
# effSref = np.vstack((ref[idx]['eff_stiffness'], -ref[idx]['eff_stiffness'] @ ref[idx]['eff_thermal_strain'])).T

# interpolated quantities using an implicit interpolation scheme with four DOF
approx_C, approx_eps = opt4(sampling_C, sampling_eps, ref_C, ref_eps)
Eopt4, _ = interpolate_fluctuation_modes(E01, approx_C, approx_eps, mat_id, n_gauss, strain_dof, n_modes, n_gp)
Sopt4 = construct_stress_localization(Eopt4, ref_C, ref_eps, mat_id, n_gauss, strain_dof)
Eopt4, _ = interpolate_fluctuation_modes(E01, approx_C, approx_eps, plastic_modes, mat_id, n_gauss, strain_dof, n_modes,
n_gp)
Sopt4 = construct_stress_localization(Eopt4, ref_C, ref_eps, plastic_modes, mat_id, n_gauss, strain_dof)
effSopt = volume_average(Sopt4)

err_indicators[level, idx] = np.mean(np.max(np.abs(compute_err_indicator_efficient(Sopt4, global_gradient)),
axis=0)) / normalization_factor_mech * 100

for strain_idx, strain in enumerate(strains):
zeta = np.hstack((strain, 1))
zeta = np.hstack((strain, 1, np.ones(plastic_modes.shape[-1])))
stress_opt4 = np.einsum('ijk,k', Sopt4, zeta, optimize='optimal')
residual = compute_residual_efficient(stress_opt4, global_gradient)

Expand All @@ -89,11 +96,11 @@
invL = la.inv(la.cholesky(Cref))
err_eff_C[level, idx] = la.norm(invL @ Capprox @ invL.T - np.eye(6)) / la.norm(np.eye(6)) * 100

err_eff_eps[level, idx] = err(la.solve(Capprox, effSopt[:, -1]), la.solve(Cref, effSref[:, -1]))
err_eff_eps[level, idx] = err(la.solve(Capprox, effSopt[:, 7]), la.solve(Cref, effSref[:, 7]))

# max_err_idx = np.argmax(np.mean(err_nodal_force[level], axis=1))
max_err_idx = np.argmax(err_indicators[level])
alpha_levels.append(np.sort(np.hstack((alphas, test_alphas[max_err_idx]))))
alpha_levels.append(np.unique(np.sort(np.hstack((alphas, test_alphas[max_err_idx])))))
print(f'{np.max(np.mean(err_nodal_force[level], axis=1)) = }')
print(f'{np.max(err_indicators[level]) = }')

Expand Down
68 changes: 41 additions & 27 deletions eg4_hierarchical_sampling_efficient.py → eg04_hierarchical_sampling_efficient.py
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,13 @@
from interpolate_fluctuation_modes import update_affine_decomposition, effective_S, effective_stress_localization, \
interpolate_fluctuation_modes, get_phi, transform_strain_localization
from microstructures import *
from optimize_alpha import opt4_alphas
from utilities import read_h5, construct_stress_localization, compute_err_indicator_efficient
from optimize_alpha import opt4_alphas, opt4
from utilities import read_h5, construct_stress_localization, compute_err_indicator_efficient, volume_average

np.random.seed(0)
# np.set_printoptions(precision=3)

for ms_id in [6, 7, 8, 9]:
for ms_id in [0]:
file_name, data_path, temp1, temp2, n_tests, sampling_alphas = itemgetter('file_name', 'data_path', 'temp1', 'temp2',
'n_tests',
'sampling_alphas')(microstructures[ms_id])
Expand All @@ -36,20 +36,25 @@
global_gradient = mesh['global_gradient']
n_gp = mesh['n_integration_points']
n_phases = len(np.unique(mat_id))
n_modes = refs[0]['strain_localization'].shape[-1]
N_modes = refs[0]['strain_localization'].shape[2] - 7

# extract temperature dependent data from the reference solutions
# such as: material stiffness and thermal strain at each temperature and for all phases
Erefs = np.zeros((n_tests, *refs[0]['strain_localization'].shape)) # n_tests x n_phases x 6 x 6
ref_Cs = np.zeros((n_tests, *refs[0]['mat_stiffness'].shape)) # n_tests x n_phases x 6 x 6
ref_epss = np.zeros((n_tests, *refs[0]['mat_thermal_strain'].shape)) # n_tests x n_phases x 6 x 1
effSref = np.zeros((n_tests, strain_dof, n_modes))
effSref = np.zeros((n_tests, strain_dof, N_modes + 7)) # n_tests x 6 x (N + 7)
normalization_factor_mech = np.zeros((n_tests))
plastic_modes = refs[0]['plastic_modes'] # temperature independent
for idx, alpha in enumerate(test_alphas):
print(idx)
Erefs[idx] = refs[idx]['strain_localization']
ref_Cs[idx] = refs[idx]['mat_stiffness']
ref_epss[idx] = refs[idx]['mat_thermal_strain']
normalization_factor_mech[idx] = refs[idx]['normalization_factor_mech']
effSref[idx] = np.hstack(
(refs[idx]['eff_stiffness'], -np.reshape(refs[idx]['eff_stiffness'] @ refs[idx]['eff_thermal_strain'], (-1, 1))))
Sref = construct_stress_localization(Erefs[idx], ref_Cs[idx], ref_epss[idx], plastic_modes, mat_id, n_gauss,
strain_dof)
effSref[idx] = volume_average(Sref)

err_indicators, err_eff_S, err_eff_C, err_eff_eps = [np.zeros((n_hierarchical_levels, n_tests)) for _ in range(4)]
interpolate_temp = lambda x1, x2, alpha: x1 + alpha * (x2 - x1)
Expand Down Expand Up @@ -105,30 +110,39 @@
current_sampling_id = alphas_indexing[idx]

K0, K1, F0, F1, F2, F3, S001, S101, S103, S002, S102, S104 = update_affine_decomposition(
E01s[current_sampling_id], sampling_C, sampling_eps, n_modes, n_phases, n_gp, strain_dof, mat_id, n_gauss)
E01s[current_sampling_id], sampling_C, sampling_eps, plastic_modes, N_modes, n_phases,
n_gp, strain_dof,
mat_id, n_gauss)

phi = get_phi(K0, K1, F0, F1, F2, F3, alpha_C, alpha_eps, alpha_C_eps)

speed = 1
if speed == 0:
C, eps = ref_Cs[idx], ref_epss[idx]
# C, eps = opt4(sampling_C, sampling_eps, ref_Cs[idx], ref_epss[idx])
_, effSopt = interpolate_fluctuation_modes(E01s[current_sampling_id], C, eps, mat_id, n_gauss, strain_dof,
n_modes, n_gp)
elif speed == 1:
effSopt = effective_stress_localization(E01s[current_sampling_id], phi, ref_Cs[idx], ref_epss[idx], mat_id,
n_gauss, n_gp, strain_dof, n_modes)
elif speed == 2:
# matches the result from interpolate_fluctuation_modes with a difference
# that depends on using ref_Cs[idx],ref_epss[idx] instead of alphas
effSopt, phi = effective_S(phi, S001, S101, S103, S002, S102, S104, alpha_C, np.squeeze(alpha_eps, axis=-1),
np.squeeze(alpha_C_eps, axis=-1))
else:
raise NotImplementedError()
# if speed == 0:
C, eps = ref_Cs[idx], ref_epss[idx]
# C, eps = opt4(sampling_C, sampling_eps, ref_Cs[idx], ref_epss[idx])
_, effSopt = interpolate_fluctuation_modes(E01s[current_sampling_id], C, eps, plastic_modes, mat_id, n_gauss,
strain_dof,
N_modes, n_gp)
#elif speed == 1:
# TODO verify the result when plasticity is on
effSopt1 = effective_stress_localization(E01s[current_sampling_id], phi, ref_Cs[idx], ref_epss[idx], plastic_modes,
mat_id,
n_gauss, n_gp, strain_dof, N_modes)
#elif speed == 2:
# TODO verify the result when plasticity is on
# matches the result from interpolate_fluctuatioN_modes with a difference
# that depends on using ref_Cs[idx],ref_epss[idx] instead of alphas
effSopt2, phi2 = effective_S(phi, S001, S101, S103, S002, S102, S104, alpha_C, np.squeeze(alpha_eps, axis=-1),
np.squeeze(alpha_C_eps, axis=-1))
#else:
# raise NotImplementedError()
print(np.linalg.norm(effSopt - effSopt1))

if not given_alpha_levels:
Eopt4 = transform_strain_localization(E01s[current_sampling_id], phi, n_gp, strain_dof, n_modes)
Sopt4 = construct_stress_localization(Eopt4, ref_Cs[idx], ref_epss[idx], mat_id, n_gauss, strain_dof)
Eopt4 = transform_strain_localization(E01s[current_sampling_id], phi, n_gp, strain_dof, N_modes)
Sopt4 = construct_stress_localization(Eopt4, ref_Cs[idx], ref_epss[idx], plastic_modes, mat_id, n_gauss,
strain_dof)
# effSopt = volume_average(Sopt4)
err_indicators[level,
idx] = np.mean(np.max(np.abs(compute_err_indicator_efficient(Sopt4, global_gradient)),
axis=0)) / normalization_factor_mech[idx] * 100
Expand All @@ -140,7 +154,7 @@
invL = la.inv(la.cholesky(Cref))

err_eff_C[level, idx] = la.norm(invL @ Capprox @ invL.T - np.eye(6)) / la.norm(np.eye(6)) * 100
err_eff_eps[level, idx] = err(la.solve(Capprox, effSopt[:, -1]), la.solve(Cref, effSref[idx][:, -1]))
err_eff_eps[level, idx] = err(la.solve(Capprox, effSopt[:, 7]), la.solve(Cref, effSref[idx][:, 7]))

# TODO remove dtype='f'
group = file.require_group(f'{data_path}_level{level}')
Expand All @@ -149,7 +163,7 @@
dset_stiffness = group.require_dataset(f'eff_stiffness_{temperature:07.2f}', (6, 6), dtype='f')
dset_thermal_strain = group.require_dataset(f'eff_thermal_strain_{temperature:07.2f}', (6), dtype='f')
dset_stiffness[:] = Capprox.T
dset_thermal_strain[:] = la.solve(Capprox, effSopt[:, -1])
dset_thermal_strain[:] = la.solve(Capprox, effSopt[:, 7])

if not given_alpha_levels:
max_err_idx = np.argmax(err_indicators[level])
Expand Down
0 eg5_FFANN.py → eg05_FFANN.py
100644 → 100755
File renamed without changes.
File renamed without changes.
2 changes: 1 addition & 1 deletion eg7_staggered_model_interpolation.py → eg07_staggered_model_interpolation.py
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@

# Offline stage: Load precomputed optimal data
load_start = time.time()
ms_id = 6
ms_id = 0
level = 4
file_name, data_path, temp1, temp2, n_samples, sampling_alphas = itemgetter('file_name', 'data_path', 'temp1', 'temp2', 'n_tests',
'sampling_alphas')(microstructures[ms_id])
Expand Down
3 changes: 2 additions & 1 deletion eg8_plot_localization.py → eg08_plot_localization.py
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,13 @@
"""
#%%
from operator import itemgetter

import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as plt
from microstructures import *
from utilities import read_h5, construct_stress_localization


np.random.seed(0)
file_name, data_path, temp1, temp2, n_tests, sampling_alphas = itemgetter(
"file_name", "data_path", "temp1", "temp2", "n_tests", "sampling_alphas"
Expand Down
Loading
Loading