Skip to content

A series of basic algorithms that are useful for video understanding, including Single Object Tracking (SOT), Video Object Segmentation (VOS) and so on.

License

Notifications You must be signed in to change notification settings

DTM3302/video_analyst

 
 

Repository files navigation

Video Analyst

Build Status

This is the implementation of a series of basic algorithms which is useful for video understanding, including Single Object Tracking (SOT), Video Object Segmentation (VOS), etc.

Current implementation list:

Example SiamFC++ outputs.

Example SAT outputs.

Quick start

Setup

Please refer to SETUP.md

Demo

SOT video demo

python3 ./demo/main/video/sot_video.py --config 'experiments/siamfcpp/test/vot/siamfcpp_alexnet.yaml' --device cuda --video $video_path$ #default is web camera

Test

Please refer to docs/TEST.md for detail.

Training

Please refer to docs/TRAINING.md for detail.

Repository structure (in progress)

├── experiments  # experiment configurations, in yaml format
├── main
│   ├── train.py  # trainng entry point
│   └── test.py  # test entry point
├── video_analyst
│   ├── data  # modules related to data
│   │   ├── dataset  # data fetcher of each individual dataset
│   │   ├── sampler  # data sampler, including inner-dataset and intra-dataset sampling procedure
│   │   ├── dataloader.py  # data loading procedure
│   │   └── transformer  # data augmentation
│   ├── engine  # procedure controller, including traiing control / hp&model loading
│   │   ├── monitor  # monitor for tasks during training, including visualization / logging / benchmarking
│   │   ├── trainer.py  # train a epoch
│   │   ├── tester.py  # test a model on a benchmark
│   ├── model # model builder
│   │   ├── backbone  # backbone network builder
│   │   ├── common_opr  # shared operator (e.g. cross-correlation)
│   │   ├── task_model  # holistic model builder
│   │   ├── task_head  # head network builder
│   │   └── loss  # loss builder
│   ├── pipeline  # pipeline builder (tracking / vos)
│   │   ├── segmenter  # segmenter builder for vos
│   │   ├── tracker  # tracker builder for tracking
│   │   └── utils  # pipeline utils
│   ├── config  # configuration manager
│   ├── evaluation  # benchmark
│   ├── optim  # optimization-related module (learning rate, gradient clipping, etc.)
│   │   ├── optimizer # optimizer
│   │   ├── scheduler # learning rate scheduler
│   │   └── grad_modifier # gradient-related operation (parameter freezing)
│   └── utils  # useful tools
└── README.md

docs

For detail, please refer to markdown files under docs.

TODO

  • [] Training code
    • [] LaSOT
    • [] COCO
  • [] Test code for OTB, LaSOT, TrackingNet

Acknowledgement

  • video_analyst/evaluation/vot_benchmark and other related code have been borrowed from PySOT
  • video_analyst/evaluation/got_benchmark and other related code have been borrowed from got-toolkit

Contact

Maintainer (sorted by family name):

About

A series of basic algorithms that are useful for video understanding, including Single Object Tracking (SOT), Video Object Segmentation (VOS) and so on.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 93.5%
  • C 5.8%
  • Shell 0.7%