Skip to content

Commit

Permalink
Merge pull request #220 from ldecicco-USGS/master
Browse files Browse the repository at this point in the history
Vignettes and other doc
  • Loading branch information
ldecicco-USGS authored Apr 3, 2018
2 parents a596e4c + 4e373bc commit 85d3dd2
Show file tree
Hide file tree
Showing 125 changed files with 2,257 additions and 9,600 deletions.
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Package: toxEval
Type: Package
Title: ToxCast Evaluations
Version: 0.3.8.9009
Version: 0.3.8.9010
Date: 2018-01-04
Authors@R: c( person("Steven", "Corsi", role = c("aut"),
email = "[email protected]"),
Expand Down
11 changes: 10 additions & 1 deletion R/clean_endPoint_info.R
Original file line number Diff line number Diff line change
@@ -1,9 +1,18 @@
#' clean_endPoint_info
#'
#' Clean up the endPointInfo table from toxCast. Filtering and cleaning based on ES&T (cite Dan/Brett's paper)
#' Clean up the endPointInfo table from ToxCast. Filtering based on
#' \url{https://pubs.acs.org/doi/10.1021/acs.est.7b01613}. Specifically,
#' this function hard-codes in the removal of endPoints that are ATG
#' sources with signal loss, and NVS with signal gain. Also, this function
#' adds some additional categories to intended_target_family and
#' intended_target_family_sub as described in the paper linked above.
#'
#' @param endPointInfo data frame Endpoint information from ToxCast
#' @export
#' @return data frame based on endPointInfo, but with some endPoints
#' filtered out, some additional categories in intended_target_family and
#' intended_target_family_sub. Also, the names in intended_target_family
#' are cleaned up to look good in graphs and tables.
#' @importFrom stringi stri_trans_totitle
#' @examples
#' endPointInfo <- endPointInfo
Expand Down
46 changes: 45 additions & 1 deletion R/create_toxEval.R
Original file line number Diff line number Diff line change
@@ -1,5 +1,49 @@
#' create_toxEval
#' Load and check toxEval data
#'
#' This function requires a path to a single Excel file. The Excel
#' file should include 3 mandatory tabs named "Data", "Chemicals", and "Sites".
#' Additionally there are 2 optional tabs: "Exclude" and "Benchmarks". This function
#' will load each sheet, creating a data frame for each sheet. It will
#' perform basic checks on the data to make sure there are the required columns in
#' each tab.
#'
#' The Data tab needs to have columns "CAS", "SiteID", "Value", "Sample Date".
#' The "Value" column is assumed to be concentration measurements in ug/L. "Sample Date"
#' can be either a date or date/time or an integer. Any other column can be included,
#' but won't be used in general toxEval functions.
#'
#' The Chemical tab needs to have columns "CAS", "Class". The "CAS" in this
#' tab must exactly match the "CAS" in the Data tab. The "Class" designation
#' allows the data to be grouped in a user-specified way. For example, you
#' may want to explore the difference between pesticides and herbicides.
#'
#' The Sites tab needs to have the columns "SiteID", "Short Name", and for the Shiny application
#' "dec_lat","dec_lon". The "SiteID" column in this tab must match exactly
#' the "SiteID" column in the Data tab.
#'
#' The optional tab Exclude needs to have the columns "CAS", "endPoint". These
#' are used to exclude particular chemicals (via CAS), ToxCast endpoints (via endPoint),
#' or a unique chemical/endpoint combination.
#'
#' The optional tab Benchmarks needs to have columns "CAS", "endPoint","ACC_value","chnm". This
#' tab is used to over-ride the functions using ToxCast endpoints, allowing the user
#' to import endpoint information from potentially other sources. It
#' could also be useful for reproducing results in the future (for example,
#' if ToxCast updates their data, you could use this tab to run the analysis
#' on the older "v2" version).
#'
#'
#' For more information, see the "User Guide" vignette.
#'
#' All remaining toxEval functions will expect the data to be supplied
#' via the list that is returned from this function.
#'
#' @return list of 3 data frames, potentially up to 5. The guaranteed data
#' frames are chem_data (containing at least the columns: "CAS", "SiteID", "Value", "Sample Date"),
#' chem_info (containing at least the columns: "CAS", "Class"),
#' chem_site (containing at least the columns: "SiteID", "Short Name", would need "dec_lat" and "dec_lon" for shiny app).
#' The optional data frames are exclusions (containing at least the columns: "CAS", "endPoint"),
#' and benchmarks (containing at least the columns: "CAS", "endPoint","ACC_value","chnm")
#'
#' @param excel_file_path Path to Excel file that contains at least 3 tabs: Data, Chemicals, and Sites,
#' and could optionally contain Exclude and Benchmarks
Expand Down
8 changes: 6 additions & 2 deletions R/explore_endpoints.R
Original file line number Diff line number Diff line change
@@ -1,6 +1,10 @@
#' Explore endpoint groupings
#' Explore data in the Shiny Application
#'
#' Open an interactive app
#' Open an interactive app in a browser. See the vignette 'User Guide'
#' for more details. Using this function is a quick and convenient way
#' to explore your data. For more customization, the R-code to
#' produce each graph and table is displayed in the app. That is
#' a good starting-point for a custom analysis.
#'
#' @param browse use browser for map rendering
#' @export
Expand Down
14 changes: 11 additions & 3 deletions R/filter_endPoint_info.R
Original file line number Diff line number Diff line change
@@ -1,11 +1,19 @@
#' filter_groups
#' Filter endPoints based on groups and assays.
#'
#' Clean up the endPointInfo table from toxCast. Filtering and cleaning based on ES&T (cite Dan/Brett's paper)
#' This function takes the data frame from \code{\link{endPointInfo}}
#' and filters the endpoints in 3 steps. First, the user specifies
#' the "groupCol" which is a column header from \code{\link{endPointInfo}}.
#' The default category is intended_target_family. Second, the user specifies the assays to use. By default, the BioSeek
#' set of assays are removed. Finally, the user can also choose to remove
#' specific group from the category. The default is to remove "Background Measurement"
#' and "Undefined", but it is a good idea to check if other groups may
#' not be relevant to the study.
#'
#' @param ep data frame Endpoint information from ToxCast
#' @param groupCol character name of column to use as a group catetory
#' @param assays vector of assays to use. Possible values are "ATG","NVS","OT","TOX21","CEETOX", "APR", "BSK",
#' "CLD","TANGUAY","NHEERL_PADILLA","NCCT_SIMMONS","ACEA"
#' "CLD","TANGUAY","NHEERL_PADILLA","NCCT_SIMMONS","ACEA". By default, the
#' "BSK" (BioSeek) assay is removed.
#' @param remove_groups vector of groups to remove
#' @export
#' @importFrom stringi stri_trans_totitle
Expand Down
8 changes: 5 additions & 3 deletions R/get_ACC.R
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
#' get_ACC
#' Get the ACC values for a selection of chemicals
#'
#' Get ACC values for vector of CAS's
#' Data from the ToxCast are included in the toxEval package. This data is
#' called and filtered based on the provided vector of CAS values.
#'
#' @param CAS vector of CAS
#' @param CAS vector of CAS.
#' @return data frame with columns CAS, chnm, flags, endPoint, ACC, MlWt, and ACC_value
#' @export
#' @importFrom tidyr gather
#' @importFrom dplyr select filter right_join mutate
Expand Down
51 changes: 36 additions & 15 deletions R/get_chemical_summary.R
Original file line number Diff line number Diff line change
@@ -1,19 +1,32 @@
#' get_chemical_summary
#' Create a chemical summary of the data.
#'
#' This function takes the measured user data from the output of \code{\link{create_toxEval}},
#' and joins the data with the endPoint information provided by ToxCast.
#' Data from ToxCast is included with this package, but alternative
#' benchmark data can be provided to perform the same "toxEval" analysis.
#'
#' To use the data provided by the package, a sample workflow is shown below
#' in the examples. It includes getting the ToxCast (ACC) values that will
#' be used to calculate the EAR, filtering out the endToints that should
#' be ignored based on "flags" in the data, and filtering out any groups
#' that may not be important to the analysis at hand.
#'
#'
#' Get ACC values for vector of CAS's
#' @param tox_list list with data frames for chem_data, chem_info, chem_site,
#' and optionally exclusions and benchmarks. Created with \code{\link{create_toxEval}}
#' @param ACClong data frame with at least columns: CAS, chnm, endPoint, ACC_value
#' @param ACClong data frame with at least columns: CAS, chnm, endPoint, ACC_value. To use data
#' provided by this package from ToxCast, use the \code{\link{get_ACC}} function. You may wish
#' to remove endPoints with specific flags using the \code{\link{remove_flags}} function.
#' @param filtered_ep data frame with colums: endPoints, groupCol. Default is \code{"All"}, where no
#' filtering occurs.
#' @param chem.data OPTIONAL data frame with (at least) columns: CAS, SiteID, Value. Default is \code{NULL}.
#' Will over-ride what is in tox_list.
#' The argument will over-ride what is in tox_list.
#' @param chem.site OPTIONAL data frame with (at least) columns: SiteID, Short Name. Default is \code{NULL}.
#' Will over-ride what is in tox_list.
#' The argument will over-ride what is in tox_list.
#' @param chem.info OPTIONAL data frame with (at least) columns: CAS, class. Default is \code{NULL}.
#' Will over-ride what is in tox_list.
#' The argument will over-ride what is in tox_list.
#' @param exclusion OPTIONAL data frame with (at least) columns: CAS and endPoint. Default is \code{NULL}.
#' Will over-ride what is in tox_list.
#' The argument will over-ride what is in tox_list.
#' @export
#' @importFrom tidyr gather
#' @importFrom dplyr full_join filter mutate select left_join right_join anti_join
Expand All @@ -23,15 +36,15 @@
#' full_path <- file.path(path_to_tox, file_name)
#'
#' tox_list <- create_toxEval(full_path)
#'
#' \dontrun{
#' ACClong <- get_ACC(tox_list$chem_info$CAS)
#' ACClong <- remove_flags(ACClong)
#'
#' cleaned_ep <- clean_endPoint_info(endPointInfo)
#' filtered_ep <- filter_groups(cleaned_ep)
#'
#' chemicalSummary <- get_chemical_summary(tox_list, ACClong, filtered_ep)
#'
#' }
get_chemical_summary <- function(tox_list, ACClong = NULL, filtered_ep = "All",
chem.data=NULL, chem.site=NULL,
chem.info=NULL, exclusion=NULL){
Expand Down Expand Up @@ -159,10 +172,21 @@ orderChem <- function(graphData, orderClass_df){
return(orderChem_df)
}

#' remove_flags
#'
#' Remove endpoints with specific flags from data
#'
#' Remove endpoints with specific flags associated with the ACC values. The set
#' of flags that are included are:
#' \tabular{ll}{
#' Flag \tab flagsShort\cr
#' Borderline active \tab Borderline \cr
#' Only highest conc above baseline, active \tab OnlyHighest \cr
#' Only one conc above baseline, active \tab OneAbove \cr
#' Noisy data \tab Noisy \cr
#' Hit-call potentially confounded by overfitting \tab HitCall \cr
#' Gain AC50 < lowest conc & loss AC50 < mean conc \tab GainAC50 \cr
#' Biochemical assay with < 50% efficacy \tab Biochemical \cr
#' }
#'
#' @param ACClong data frame with columns: casn, chnm, endPoint, ACC_value
#' @param flagsShort vector of flags to TAKE OUT. Possible values are
#' "Borderline", "OnlyHighest", "OneAbove","Noisy", "HitCall", "GainAC50", "Biochemical"
Expand Down Expand Up @@ -240,14 +264,11 @@ remove_flags <- function(ACClong, flagsShort = c("Borderline",
#' cleaned_ep <- clean_endPoint_info(endPointInfo)
#' filtered_ep <- filter_groups(cleaned_ep)
#' chemicalSummary <- get_chemical_summary(tox_list, ACClong, filtered_ep)
#' }
#' # The example workflow takes a bit of time to load and compute,
#' # so an example chemicalSummary is included pre-calculated in the package.
#' chemicalSummary <- ex_chemSum #loading example data
#' exclusion <- data.frame(CAS = c("134-62-3","486-56-6"),
#' endPoint = c("", "TOX21_p53_BLA_p3_viability"),
#' stringsAsFactors = FALSE)
#' chemicalSummary <- exclude_points(chemicalSummary, exclusion)
#' }
exclude_points <- function(chemicalSummary, exclusion){

CAS <- endPoint <- casrn <- ".dplyr"
Expand Down
12 changes: 4 additions & 8 deletions R/makeMap.R
Original file line number Diff line number Diff line change
Expand Up @@ -28,11 +28,8 @@
#' cleaned_ep <- clean_endPoint_info(endPointInfo)
#' filtered_ep <- filter_groups(cleaned_ep)
#' chemicalSummary <- get_chemical_summary(tox_list, ACClong, filtered_ep)
#' }
#' # The example workflow takes a bit of time to load and compute,
#' # so an example chemicalSummary is included pre-calculated in the package.
#' chemicalSummary <- ex_chemSum #loading example data
#' mapData <- getMapInfo(chemicalSummary, tox_list$chem_site, "Biological")
#' }
getMapInfo <- function(chemicalSummary,
chem_site,
category = "Biological",
Expand Down Expand Up @@ -119,19 +116,18 @@ getMapInfo <- function(chemicalSummary,
#' cleaned_ep <- clean_endPoint_info(endPointInfo)
#' filtered_ep <- filter_groups(cleaned_ep)
#' chemicalSummary <- get_chemical_summary(tox_list, ACClong, filtered_ep)
#' }
#' # The example workflow takes a bit of time to load and compute,
#' # so an example chemicalSummary is included pre-calculated in the package.
#'
#' chemicalSummary <- ex_chemSum #loading example data
#' makeMap(chemicalSummary, tox_list$chem_site, "Biological")
#' makeMap(chemicalSummary, tox_list$chem_site, "Chemical Class")
#' makeMap(chemicalSummary, tox_list$chem_site, "Chemical")
#' }
makeMap <- function(chemicalSummary,
chem_site,
category = "Biological",
mean_logic = FALSE){

SiteID <- ".dplyr
"
maxEARWords <- ifelse(mean_logic,"meanEAR","maxEAR")

mapDataList <- getMapInfo(chemicalSummary,
Expand Down
11 changes: 3 additions & 8 deletions R/plot_chemical_boxplots.R
Original file line number Diff line number Diff line change
Expand Up @@ -25,12 +25,9 @@
#' cleaned_ep <- clean_endPoint_info(endPointInfo)
#' filtered_ep <- filter_groups(cleaned_ep)
#' chemicalSummary <- get_chemical_summary(tox_list, ACClong, filtered_ep)
#' }
#' # The example workflow takes a bit of time to load and compute,
#' # so an example chemicalSummary is included pre-calculated in the package.
#' chemicalSummary <- ex_chemSum #loading example data
#'
#' plot_chemical_boxplots(chemicalSummary)
#' }
plot_chemical_boxplots <- function(chemicalSummary,
manual_remove=NULL,
mean_logic = FALSE,
Expand Down Expand Up @@ -155,11 +152,9 @@ plot_chemical_boxplots <- function(chemicalSummary,
#' cleaned_ep <- clean_endPoint_info(endPointInfo)
#' filtered_ep <- filter_groups(cleaned_ep)
#' chemicalSummary <- get_chemical_summary(tox_list, ACClong, filtered_ep)
#' }
#' # The example workflow takes a bit of time to load and compute,
#' # so an example chemicalSummary is included pre-calculated in the package.
#' chemicalSummary <- ex_chemSum #loading example data
#'
#' graphData <- graph_chem_data(chemicalSummary)
#' }
graph_chem_data <- function(chemicalSummary,
manual_remove=NULL,
mean_logic = FALSE){
Expand Down
6 changes: 1 addition & 5 deletions R/plot_group_boxplots.R
Original file line number Diff line number Diff line change
Expand Up @@ -26,14 +26,10 @@
#' cleaned_ep <- clean_endPoint_info(endPointInfo)
#' filtered_ep <- filter_groups(cleaned_ep)
#' chemicalSummary <- get_chemical_summary(tox_list, ACClong, filtered_ep)
#' }
#' # The example workflow takes a bit of time to load and compute,
#' # so an example chemicalSummary is included pre-calculated in the package.
#'
#' chemicalSummary <- ex_chemSum #loading example data
#' plot_tox_boxplots(chemicalSummary, "Biological")
#' plot_tox_boxplots(chemicalSummary, "Chemical Class")
#' plot_tox_boxplots(chemicalSummary, "Chemical")
#' }
plot_tox_boxplots <- function(chemicalSummary,
category = "Biological",
manual_remove = NULL,
Expand Down
9 changes: 3 additions & 6 deletions R/plot_heat_chemical.R
Original file line number Diff line number Diff line change
Expand Up @@ -22,11 +22,6 @@
#' cleaned_ep <- clean_endPoint_info(endPointInfo)
#' filtered_ep <- filter_groups(cleaned_ep)
#' chemicalSummary <- get_chemical_summary(tox_list, ACClong, filtered_ep)
#' }
#' # The example workflow takes a bit of time to load and compute,
#' # so an example chemicalSummary is included pre-calculated in the package.
#'
#' chemicalSummary <- ex_chemSum #loading example data
#'
#' graphData <- graph_chem_data(chemicalSummary)
#' plot_heat_chemicals(graphData, tox_list$chem_site)
Expand Down Expand Up @@ -59,6 +54,7 @@
#' levels = sitesOrdered)
#'
#' plot_heat_chemicals(graphData, tox_list$chem_site)
#' }
plot_heat_chemicals <- function(graphData, chem_site){

SiteID <- site_grouping <- `Short Name` <- chnm <- maxEAR <- ".dplyr"
Expand Down Expand Up @@ -115,7 +111,7 @@ plot_heat_chemicals <- function(graphData, chem_site){
#' path_to_tox <- system.file("extdata", package="toxEval")
#' file_name <- "OWC_data_fromSup.xlsx"
#' full_path <- file.path(path_to_tox, file_name)
#'
#' \dontrun{
#' tox_list <- create_toxEval(full_path)
#'
#' ACClong <- get_ACC(tox_list$chem_info$CAS)
Expand Down Expand Up @@ -157,6 +153,7 @@ plot_heat_chemicals <- function(graphData, chem_site){
#' manual_remove = "Undefined")
#' plot_tox_heatmap(chemicalSummary, tox_list$chem_site, category = "Chemical Class")
#' plot_tox_heatmap(chemicalSummary, tox_list$chem_site, category = "Chemical")
#' }
plot_tox_heatmap <- function(chemicalSummary,
chem_site,
category = "Biological",
Expand Down
10 changes: 4 additions & 6 deletions R/plot_tox_endpoints.R
Original file line number Diff line number Diff line change
Expand Up @@ -27,13 +27,11 @@
#' cleaned_ep <- clean_endPoint_info(endPointInfo)
#' filtered_ep <- filter_groups(cleaned_ep)
#' chemicalSummary <- get_chemical_summary(tox_list, ACClong, filtered_ep)
#'
#' plot_tox_endpoints(chemicalSummary, filterBy = "Cell Cycle")
#' plot_tox_endpoints(chemicalSummary, category = "Chemical Class", filterBy = "PAHs")
#' plot_tox_endpoints(chemicalSummary, category = "Chemical", filterBy = "Atrazine")
#' }
#' # The example workflow takes a bit of time to load and compute,
#' # so an example chemicalSummary is included pre-calculated in the package.
#' chemicalSummary <- ex_chemSum #loading example data
#' plot_tox_endpoints(chemicalSummary, filterBy = "Cell Cycle")
#' plot_tox_endpoints(chemicalSummary, category = "Chemical Class", filterBy = "PAHs")
#' plot_tox_endpoints(chemicalSummary, category = "Chemical", filterBy = "Atrazine")
plot_tox_endpoints <- function(chemicalSummary,
category = "Biological",
filterBy = "All",
Expand Down
9 changes: 3 additions & 6 deletions R/plot_tox_stacks.R
Original file line number Diff line number Diff line change
Expand Up @@ -27,14 +27,11 @@
#' cleaned_ep <- clean_endPoint_info(endPointInfo)
#' filtered_ep <- filter_groups(cleaned_ep)
#' chemicalSummary <- get_chemical_summary(tox_list, ACClong, filtered_ep)
#' }
#' # The example workflow takes a bit of time to load and compute,
#' # so an example chemicalSummary is included pre-calculated in the package.
#' chemicalSummary <- ex_chemSum #loading example data
#'
#'
#' plot_tox_stacks(chemicalSummary, tox_list$chem_site, "Biological")
#' plot_tox_stacks(chemicalSummary, tox_list$chem_site, "Chemical Class")
#' plot_tox_stacks(chemicalSummary, tox_list$chem_site, "Chemical", include_legend = FALSE)
#' }
plot_tox_stacks <- function(chemicalSummary,
chem_site,
category = "Biological",
Expand All @@ -45,7 +42,7 @@ plot_tox_stacks <- function(chemicalSummary,
match.arg(category, c("Biological","Chemical Class","Chemical"))

site <- EAR <- sumEAR <- meanEAR <- groupCol <- nonZero <- ".dplyr"
SiteID <- site_grouping <- `Short Name` <- count <- ".dplyr"
SiteID <- site_grouping <- index <- `Short Name` <- count <- ".dplyr"

if(!("site_grouping" %in% names(chem_site))){
chem_site$site_grouping <- ""
Expand Down
Loading

0 comments on commit 85d3dd2

Please sign in to comment.