Skip to content

Chikakoyanagida/AttFpPost_PyG

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reducing Overconfident Errors in Molecular Property Classification using Posterior Network

This repository is the PyG implementation of "Reducing Overconfident Errors in Molecular Property Classification using Posterior Network", by Zhehuan Fan.😊

🔔 News

[2024.06] The PyG implementation of AttFpPost is released!🎉

🔧 Environment Setup

We recommend using mamba to create a new environment and install the required packages.

mamba create -n postnet python==3.10
mamba activate postnet
mamba install pytorch==2.2.0 pytorch-cuda=11.8 -c pytorch -c nvidia
mamba install -c conda-forge lightning
mamba install -c conda-forge rdkit
mamba install pyg -c pyg
pip install pyro-ppl
pip install wandb

📄 Reproducing

If you want to reproduce the results presented in our paper, please refer to the original repository here

📦 Datasets creation

Dataset Folder Structure

Before creating the dataset, ensure you organize your data files according to the following folder structure:

data/
└── [dataset_name]/
    └── raw/
        ├── train.csv/
        ├── val.csv/
        └── test.csv/

Place your train.csv, val.csv, and test.csv files in the data/[dataset_name]/raw/ directory and run the dataset creation script:

python create_dataset.py [dataset_name]

🚀 Training your own model

The training assumes that wandb is installed and that a wandb account is set up. To start a training run, execute

python train_model.py --dataset_name [dataset_name]

Citation

If you find this repository useful in your research, please consider citing our paper 😊:

Fan et al., Reducing overconfident errors in molecular property classification using Posterior Network, Patterns (2024), 
doi:https://doi.org/10.1016/j.patter.2024.100991

About

Forked form shokaku

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%