This repository is the PyG implementation of "Reducing Overconfident Errors in Molecular Property Classification using Posterior Network", by Zhehuan Fan.😊
[2024.06] The PyG implementation of AttFpPost is released!🎉
We recommend using mamba to create a new environment and install the required packages.
mamba create -n postnet python==3.10
mamba activate postnet
mamba install pytorch==2.2.0 pytorch-cuda=11.8 -c pytorch -c nvidia
mamba install -c conda-forge lightning
mamba install -c conda-forge rdkit
mamba install pyg -c pyg
pip install pyro-ppl
pip install wandb
If you want to reproduce the results presented in our paper, please refer to the original repository here
Before creating the dataset, ensure you organize your data files according to the following folder structure:
data/
└── [dataset_name]/
└── raw/
├── train.csv/
├── val.csv/
└── test.csv/
Place your train.csv
, val.csv
, and test.csv
files in the data/[dataset_name]/raw/
directory and run the dataset creation script:
python create_dataset.py [dataset_name]
The training assumes that wandb is installed and that a wandb account is set up. To start a training run, execute
python train_model.py --dataset_name [dataset_name]
If you find this repository useful in your research, please consider citing our paper 😊:
Fan et al., Reducing overconfident errors in molecular property classification using Posterior Network, Patterns (2024),
doi:https://doi.org/10.1016/j.patter.2024.100991