Source code of "CLINet: A Novel Deep Learning Network for ECG Signal Classification", accepted in Journal of Electrocardiology 2024
If you are using this code, please cite our paper:
@article {ref199,
title = "CLINet: A Novel Deep Learning Network for ECG Signal Classification",
year = "2024",
author = "Ananya Mantravadi and Siddharth Saini and R Sai Chandra Teja and Sparsh Mittal and Shrimay Shah and R Sri Devi and Rekha Singhal",
journal = "Journal of Electrocardiology",
}
├── LICENSE <- The LICENSE for developers using this project.
├── README.md <- The top-level README for developers using this project.
├── data <- Data used in the project.
│ ├── iccad <- Add ICCAD dataset with this path in the folder.
│ │ ├── tinyml_contest_data_training
│ | │ ├──S01-AFb-1.txt
│ | │ ├──S01-AFb-10.txt
│ | │ ├──...
│ │ ├── data-indices
│ | │ ├── train-indice
│ | │ ├── test-indice
│ ├── mit-bih <- Add MIT-BIH dataset with this path in the folder.
│ │ ├── mitbih_database
│ | │ ├──100.csv
│ | │ ├──100annotations.txt
│ | │ ├──...
├── src <- Source code for use in this project.
│ ├── iccad_dataloader.py <- Source code for generating data loader for ICCAD dataset.
| ├── mitbih_dataloader.py <- Source code for generating data loader for MIT-BIH dataset.
│ ├── network.py <- Source code for the CLINet network.
│ ├── involution.py <- Source code for definition of custom involution layer.
│ ├── tsne.py <- Source code for plotting t-SNE.
│ ├── main.py <- Source code for using CLINet on ICCAD and MIT-BIH
└─────────────────────────────────────────────────────────────────────────────────────────────────────────────
To train CLINet, Run following command from /src
directory.
python main.py
Above command will train model for 50 epochs with given configuration.
MIT License Copyright (c) 2024 CandleLabAI