An official code of Densely-packed Object Detection via Hard Negative-Aware Anchor Attention in WACV2022
- SKU110k dataset : https://github.com/eg4000/SKU110K_CVPR19
- download ,unzip and build a structure like bellows
SUK110K_fixed (root)
|-- SUK110K_fixed
|-- images
|-- test_0.jpg
|-- ...
|-- annotations
|-- annotations_test.csv
|-- ...
|-- LICENSE.txt
- Download 'pretrained_model.pth.tar' from here (about 168MB)
- make './saves' folder and put it to './saves' folder.
- Download dataset
- Download pretrained_model
# python test.py
usage: test.py [-h] [--data_root]
-h, --help show this help message and exit
--data_root for testing, set your sku110k root path (default='D:\SKU110K_fixed')
methods | Dataset | Resolution | AP | AP50 | AP75 | AR300 | AR300^0.50 | P(R=.5) |
---|---|---|---|---|---|---|---|---|
ours | SKU test | 800~1333 | 0.522 | 0.897 | 0.556 | 0.601 | 0.935 | 0.816 |
@InProceedings{Cho_2022_WACV,
author = {Cho, Sungmin and Paeng, Jinwook and Kwon, Junseok},
title = {Densely-Packed Object Detection via Hard Negative-Aware Anchor Attention},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2022},
pages = {2635-2644}
}