Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Safe distributions as float x.0 distributions #505

Closed
wants to merge 1 commit into from

Conversation

SamuelBrand1
Copy link
Collaborator

This is another test PR which aims at testing #492 by treating Safe integer dists as returning x.0 floats.

Copy link
Contributor

Try this Pull Request!

Open Julia and type:

import Pkg
Pkg.activate(temp=true)
Pkg.add(url="https://github.com/CDCgov/Rt-without-renewal", rev="safe-ret-float", subdir="EpiAware")
using EpiAware

Copy link
Contributor

Benchmark result

Judge result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmarks:
    • Target: 15 Oct 2024 - 10:29
    • Baseline: 15 Oct 2024 - 10:55
  • Package commits:
    • Target: fddea7
    • Baseline: 26256a
  • Julia commits:
    • Target: 501a4f
    • Baseline: 501a4f
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.12 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.15 (5%) ❌ 1.00 (1%)
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.95 (5%) ✅ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Target

Julia Version 1.11.0
Commit 501a4f25c2b (2024-10-07 11:40 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz       5716 s          0 s        496 s      17964 s          0 s
       #2     0 MHz       7128 s          0 s        474 s      16572 s          0 s
       #3     0 MHz       5592 s          0 s        489 s      18096 s          0 s
       #4     0 MHz       5402 s          0 s        474 s      18300 s          0 s
  Memory: 15.606491088867188 GB (13248.86328125 MB free)
  Uptime: 2422.83 sec
  Load Avg:  1.0  1.0  1.0
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.11.0
Commit 501a4f25c2b (2024-10-07 11:40 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz       9792 s          0 s        828 s      29214 s          0 s
       #2     0 MHz      11009 s          0 s        800 s      28025 s          0 s
       #3     0 MHz       8781 s          0 s        777 s      30279 s          0 s
       #4     0 MHz       9237 s          0 s        764 s      29835 s          0 s
  Memory: 15.606491088867188 GB (12921.23046875 MB free)
  Uptime: 3991.43 sec
  Load Avg:  1.04  1.03  1.0
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 15 Oct 2024 - 10:29
  • Package commit: fddea7
  • Julia commit: 501a4f
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 2.102 μs (5%) 416 bytes (1%) 10
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 281.140 ns (5%) 464 bytes (1%) 10
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 274.048 ns (5%) 464 bytes (1%) 10
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 406.110 ns (5%) 816 bytes (1%) 18
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 397.390 ns (5%) 816 bytes (1%) 18
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 10.179 μs (5%) 5.55 KiB (1%) 125
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.189 μs (5%) 5.55 KiB (1%) 125
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 510.953 ns (5%) 256 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 513.354 ns (5%) 256 bytes (1%) 7
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 186.846 ns (5%) 288 bytes (1%) 8
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 180.126 ns (5%) 288 bytes (1%) 8
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 272.770 ns (5%) 544 bytes (1%) 15
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 262.687 ns (5%) 544 bytes (1%) 15
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 10.129 μs (5%) 5.53 KiB (1%) 124
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.119 μs (5%) 5.53 KiB (1%) 124
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 496.747 ns (5%) 256 bytes (1%) 7
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 491.072 ns (5%) 256 bytes (1%) 7
["EpiLatentModels", "AR", "evaluation", "linked"] 4.740 μs (5%) 4.19 KiB (1%) 91
["EpiLatentModels", "AR", "evaluation", "standard"] 4.421 μs (5%) 3.20 KiB (1%) 84
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 6.366 μs (5%) 12.20 KiB (1%) 108
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.794 μs (5%) 10.64 KiB (1%) 97
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 126.306 μs (5%) 54.77 KiB (1%) 1247
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 84.868 μs (5%) 40.47 KiB (1%) 917
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.363 μs (5%) 8.33 KiB (1%) 257
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 15.850 μs (5%) 7.20 KiB (1%) 221
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 907.194 ns (5%) 2.75 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 672.520 ns (5%) 1.88 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.281 μs (5%) 4.83 KiB (1%) 45
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.033 μs (5%) 3.95 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 47.399 μs (5%) 23.62 KiB (1%) 461
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.727 μs (5%) 16.55 KiB (1%) 353
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.895 μs (5%) 1.02 KiB (1%) 32
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.698 μs (5%) 1.02 KiB (1%) 32
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 21.731 μs (5%) 45.67 KiB (1%) 383
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 18.826 μs (5%) 31.16 KiB (1%) 339
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 48.350 μs (5%) 105.72 KiB (1%) 805
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 41.567 μs (5%) 75.84 KiB (1%) 709
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 159.217 μs (5%) 100.33 KiB (1%) 1607
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 110.225 μs (5%) 72.50 KiB (1%) 1240
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.814 μs (5%) 8.44 KiB (1%) 258
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.440 μs (5%) 7.31 KiB (1%) 222
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 43.040 μs (5%) 37.27 KiB (1%) 496
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 40.485 μs (5%) 28.83 KiB (1%) 466
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 44.232 μs (5%) 40.86 KiB (1%) 511
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 41.507 μs (5%) 32.42 KiB (1%) 481
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 116.888 μs (5%) 62.78 KiB (1%) 1021
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 94.907 μs (5%) 49.59 KiB (1%) 888
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.109 μs (5%) 2.20 KiB (1%) 60
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.898 μs (5%) 2.20 KiB (1%) 60
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 7.830 μs (5%) 5.55 KiB (1%) 102
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 7.341 μs (5%) 3.86 KiB (1%) 96
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 9.036 μs (5%) 13.92 KiB (1%) 115
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 8.693 μs (5%) 12.23 KiB (1%) 109
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 87.443 μs (5%) 39.72 KiB (1%) 833
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 68.648 μs (5%) 33.28 KiB (1%) 724
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.715 μs (5%) 2.27 KiB (1%) 59
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.408 μs (5%) 2.27 KiB (1%) 59
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 383.768 ns (5%) 1.03 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 295.418 ns (5%) 896 bytes (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.124 μs (5%) 5.12 KiB (1%) 23
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.016 μs (5%) 4.97 KiB (1%) 22
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 43.491 μs (5%) 19.03 KiB (1%) 381
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 28.123 μs (5%) 14.17 KiB (1%) 278
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.100 μs (5%) 608 bytes (1%) 9
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 930.212 ns (5%) 608 bytes (1%) 9
["EpiLatentModels", "Intercept", "evaluation", "linked"] 223.137 ns (5%) 400 bytes (1%) 10
["EpiLatentModels", "Intercept", "evaluation", "standard"] 212.120 ns (5%) 400 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 311.502 ns (5%) 704 bytes (1%) 17
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 295.529 ns (5%) 704 bytes (1%) 17
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 5.368 μs (5%) 3.62 KiB (1%) 87
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 5.365 μs (5%) 3.62 KiB (1%) 87
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 393.418 ns (5%) 208 bytes (1%) 4
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 396.612 ns (5%) 208 bytes (1%) 4
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.791 μs (5%) 3.56 KiB (1%) 40
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.583 μs (5%) 3.09 KiB (1%) 37
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.546 μs (5%) 7.66 KiB (1%) 49
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.318 μs (5%) 7.19 KiB (1%) 46
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.487 μs (5%) 21.42 KiB (1%) 406
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.928 μs (5%) 16.25 KiB (1%) 301
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.092 μs (5%) 608 bytes (1%) 9
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 919.353 ns (5%) 608 bytes (1%) 9
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 567.690 ns (5%) 1.72 KiB (1%) 21
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 430.352 ns (5%) 1.28 KiB (1%) 19
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.422 μs (5%) 8.11 KiB (1%) 32
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.244 μs (5%) 7.67 KiB (1%) 30
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 52.618 μs (5%) 25.52 KiB (1%) 504
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 36.408 μs (5%) 20.33 KiB (1%) 399
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.513 μs (5%) 1.33 KiB (1%) 32
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.316 μs (5%) 1.33 KiB (1%) 32
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 541.277 ns (5%) 1.25 KiB (1%) 20
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 408.415 ns (5%) 960 bytes (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 703.692 ns (5%) 1.78 KiB (1%) 29
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 551.242 ns (5%) 1.47 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 42.810 μs (5%) 18.31 KiB (1%) 387
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 27.391 μs (5%) 13.30 KiB (1%) 283
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.007 μs (5%) 352 bytes (1%) 9
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 836.234 ns (5%) 352 bytes (1%) 9
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 266.372 ns (5%) 448 bytes (1%) 12
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 259.844 ns (5%) 448 bytes (1%) 12
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 354.757 ns (5%) 768 bytes (1%) 19
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 346.759 ns (5%) 768 bytes (1%) 19
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 5.719 μs (5%) 3.93 KiB (1%) 95
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 5.739 μs (5%) 3.93 KiB (1%) 95
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 482.697 ns (5%) 160 bytes (1%) 4
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 477.764 ns (5%) 160 bytes (1%) 4
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 1.196 μs (5%) 3.73 KiB (1%) 43
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 911.271 ns (5%) 2.42 KiB (1%) 37
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.172 μs (5%) 9.80 KiB (1%) 54
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.768 μs (5%) 8.48 KiB (1%) 48
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 68.438 μs (5%) 34.69 KiB (1%) 702
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 52.117 μs (5%) 28.62 KiB (1%) 593
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 4.912 μs (5%) 1.23 KiB (1%) 32
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.725 μs (5%) 1.23 KiB (1%) 32
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 8.246 μs (5%) 5.78 KiB (1%) 113
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 7.694 μs (5%) 3.95 KiB (1%) 103
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 8.767 μs (5%) 8.98 KiB (1%) 130
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 8.352 μs (5%) 6.83 KiB (1%) 116
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 104.504 μs (5%) 42.25 KiB (1%) 861
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 65.432 μs (5%) 29.61 KiB (1%) 608
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.200 μs (5%) 1.83 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.596 μs (5%) 1.70 KiB (1%) 53
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.431 μs (5%) 3.58 KiB (1%) 63
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.380 μs (5%) 3.58 KiB (1%) 63
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.056 μs (5%) 3.92 KiB (1%) 72
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.065 μs (5%) 3.92 KiB (1%) 72
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 75.641 μs (5%) 38.77 KiB (1%) 918
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 60.634 μs (5%) 34.02 KiB (1%) 815
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.714 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.637 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 14.216 μs (5%) 22.08 KiB (1%) 412
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 14.156 μs (5%) 22.08 KiB (1%) 412
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 18.404 μs (5%) 22.30 KiB (1%) 419
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 18.044 μs (5%) 22.30 KiB (1%) 419
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 524.809 μs (5%) 293.05 KiB (1%) 7011
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 503.068 μs (5%) 288.30 KiB (1%) 6908
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 50.904 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 50.925 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.138 μs (5%) 400 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.094 μs (5%) 400 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.640 μs (5%) 624 bytes (1%) 17
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.570 μs (5%) 624 bytes (1%) 17
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 72.706 μs (5%) 35.95 KiB (1%) 903
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 56.815 μs (5%) 31.20 KiB (1%) 800
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.674 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.554 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.375 μs (5%) 1.83 KiB (1%) 30
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.046 μs (5%) 1.47 KiB (1%) 26
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.510 μs (5%) 7.78 KiB (1%) 43
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.858 μs (5%) 4.70 KiB (1%) 35
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 164.156 μs (5%) 86.44 KiB (1%) 1870
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 46.456 μs (5%) 29.38 KiB (1%) 727
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.188 μs (5%) 176 bytes (1%) 3
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.246 μs (5%) 176 bytes (1%) 3
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.684 μs (5%) 1.56 KiB (1%) 34
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.623 μs (5%) 1.56 KiB (1%) 34
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.796 μs (5%) 1.78 KiB (1%) 41
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.708 μs (5%) 1.78 KiB (1%) 41
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 26.930 μs (5%) 12.59 KiB (1%) 290
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 12.754 μs (5%) 7.84 KiB (1%) 187
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.123 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 966.188 ns (5%) 96 bytes (1%) 3
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 6.787 μs (5%) 5.81 KiB (1%) 117
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 6.699 μs (5%) 5.81 KiB (1%) 117
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 7.507 μs (5%) 6.16 KiB (1%) 126
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.429 μs (5%) 6.16 KiB (1%) 126
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 87.393 μs (5%) 49.09 KiB (1%) 1044
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 70.782 μs (5%) 44.34 KiB (1%) 941
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.163 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.997 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.083 μs (5%) 9.09 KiB (1%) 100
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 3.682 μs (5%) 7.84 KiB (1%) 92
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 6.003 μs (5%) 16.22 KiB (1%) 111
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.450 μs (5%) 14.97 KiB (1%) 103
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 105.557 μs (5%) 59.83 KiB (1%) 1164
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 87.483 μs (5%) 53.88 KiB (1%) 1054
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.407 μs (5%) 496 bytes (1%) 9
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.243 μs (5%) 496 bytes (1%) 9
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.472 μs (5%) 3.05 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 940.958 ns (5%) 1.48 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.768 μs (5%) 4.11 KiB (1%) 48
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.211 μs (5%) 2.55 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 38.431 μs (5%) 24.38 KiB (1%) 498
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 22.031 μs (5%) 17.39 KiB (1%) 366
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.201 μs (5%) 144 bytes (1%) 3
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.971 μs (5%) 144 bytes (1%) 3
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 435.717 ns (5%) 352 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 373.966 ns (5%) 352 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 552.962 ns (5%) 576 bytes (1%) 17
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 495.430 ns (5%) 576 bytes (1%) 17
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 31.328 μs (5%) 18.34 KiB (1%) 418
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 17.403 μs (5%) 12.92 KiB (1%) 296
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.825 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.604 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 28.533 μs (5%) 3.02 KiB (1%) 64
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 28.373 μs (5%) 2.70 KiB (1%) 62
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 19.366 μs (5%) 2.73 KiB (1%) 51
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 19.176 μs (5%) 2.42 KiB (1%) 49
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 60.012 μs (5%) 24.08 KiB (1%) 525
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 40.355 μs (5%) 18.34 KiB (1%) 401
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.193 μs (5%) 112 bytes (1%) 3
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.989 μs (5%) 112 bytes (1%) 3

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.11.0
Commit 501a4f25c2b (2024-10-07 11:40 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz       5716 s          0 s        496 s      17964 s          0 s
       #2     0 MHz       7128 s          0 s        474 s      16572 s          0 s
       #3     0 MHz       5592 s          0 s        489 s      18096 s          0 s
       #4     0 MHz       5402 s          0 s        474 s      18300 s          0 s
  Memory: 15.606491088867188 GB (13248.86328125 MB free)
  Uptime: 2422.83 sec
  Load Avg:  1.0  1.0  1.0
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 15 Oct 2024 - 10:55
  • Package commit: 26256a
  • Julia commit: 501a4f
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 2.097 μs (5%) 416 bytes (1%) 10
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 279.129 ns (5%) 464 bytes (1%) 10
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 280.758 ns (5%) 464 bytes (1%) 10
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 424.111 ns (5%) 816 bytes (1%) 18
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 414.725 ns (5%) 816 bytes (1%) 18
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 10.189 μs (5%) 5.55 KiB (1%) 125
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.119 μs (5%) 5.55 KiB (1%) 125
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 499.689 ns (5%) 256 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 500.881 ns (5%) 256 bytes (1%) 7
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 185.717 ns (5%) 288 bytes (1%) 8
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 178.288 ns (5%) 288 bytes (1%) 8
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 270.439 ns (5%) 544 bytes (1%) 15
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 263.937 ns (5%) 544 bytes (1%) 15
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 10.149 μs (5%) 5.53 KiB (1%) 124
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.129 μs (5%) 5.53 KiB (1%) 124
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 497.165 ns (5%) 256 bytes (1%) 7
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 499.223 ns (5%) 256 bytes (1%) 7
["EpiLatentModels", "AR", "evaluation", "linked"] 4.750 μs (5%) 4.19 KiB (1%) 91
["EpiLatentModels", "AR", "evaluation", "standard"] 4.401 μs (5%) 3.20 KiB (1%) 84
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 6.228 μs (5%) 12.20 KiB (1%) 108
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.742 μs (5%) 10.64 KiB (1%) 97
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 128.860 μs (5%) 54.77 KiB (1%) 1247
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 85.519 μs (5%) 40.47 KiB (1%) 917
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.183 μs (5%) 8.33 KiB (1%) 257
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.101 μs (5%) 7.20 KiB (1%) 221
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 926.731 ns (5%) 2.75 KiB (1%) 34
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 679.954 ns (5%) 1.88 KiB (1%) 30
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.300 μs (5%) 4.83 KiB (1%) 45
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.027 μs (5%) 3.95 KiB (1%) 41
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 49.763 μs (5%) 23.62 KiB (1%) 461
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.887 μs (5%) 16.55 KiB (1%) 353
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.938 μs (5%) 1.02 KiB (1%) 32
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.724 μs (5%) 1.02 KiB (1%) 32
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 22.030 μs (5%) 45.67 KiB (1%) 383
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 18.925 μs (5%) 31.16 KiB (1%) 339
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 49.853 μs (5%) 105.72 KiB (1%) 805
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 42.819 μs (5%) 75.84 KiB (1%) 709
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 164.206 μs (5%) 100.33 KiB (1%) 1607
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 117.338 μs (5%) 72.50 KiB (1%) 1240
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.633 μs (5%) 8.44 KiB (1%) 258
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.260 μs (5%) 7.31 KiB (1%) 222
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 42.659 μs (5%) 37.27 KiB (1%) 496
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 40.195 μs (5%) 28.83 KiB (1%) 466
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 43.591 μs (5%) 40.86 KiB (1%) 511
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 41.568 μs (5%) 32.42 KiB (1%) 481
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 124.152 μs (5%) 62.78 KiB (1%) 1021
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 99.326 μs (5%) 49.59 KiB (1%) 888
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.131 μs (5%) 2.20 KiB (1%) 60
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.883 μs (5%) 2.20 KiB (1%) 60
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 7.854 μs (5%) 5.55 KiB (1%) 102
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 7.349 μs (5%) 3.86 KiB (1%) 96
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 9.036 μs (5%) 13.92 KiB (1%) 115
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 8.700 μs (5%) 12.23 KiB (1%) 109
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 90.178 μs (5%) 39.72 KiB (1%) 833
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 69.309 μs (5%) 33.28 KiB (1%) 724
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.578 μs (5%) 2.27 KiB (1%) 59
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.424 μs (5%) 2.27 KiB (1%) 59
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 391.907 ns (5%) 1.03 KiB (1%) 14
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 303.389 ns (5%) 896 bytes (1%) 13
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.004 μs (5%) 5.12 KiB (1%) 23
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 880.214 ns (5%) 4.97 KiB (1%) 22
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 43.781 μs (5%) 19.03 KiB (1%) 381
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 27.521 μs (5%) 14.17 KiB (1%) 278
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.120 μs (5%) 608 bytes (1%) 9
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 932.067 ns (5%) 608 bytes (1%) 9
["EpiLatentModels", "Intercept", "evaluation", "linked"] 220.294 ns (5%) 400 bytes (1%) 10
["EpiLatentModels", "Intercept", "evaluation", "standard"] 208.898 ns (5%) 400 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 320.554 ns (5%) 704 bytes (1%) 17
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 310.109 ns (5%) 704 bytes (1%) 17
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 5.544 μs (5%) 3.62 KiB (1%) 87
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 5.520 μs (5%) 3.62 KiB (1%) 87
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 412.165 ns (5%) 208 bytes (1%) 4
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 407.960 ns (5%) 208 bytes (1%) 4
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 1.788 μs (5%) 3.56 KiB (1%) 40
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.596 μs (5%) 3.09 KiB (1%) 37
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.549 μs (5%) 7.66 KiB (1%) 49
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.344 μs (5%) 7.19 KiB (1%) 46
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 47.168 μs (5%) 21.42 KiB (1%) 406
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 30.436 μs (5%) 16.25 KiB (1%) 301
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.098 μs (5%) 608 bytes (1%) 9
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 934.703 ns (5%) 608 bytes (1%) 9
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 583.796 ns (5%) 1.72 KiB (1%) 21
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 435.538 ns (5%) 1.28 KiB (1%) 19
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.371 μs (5%) 8.11 KiB (1%) 32
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.242 μs (5%) 7.67 KiB (1%) 30
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 54.161 μs (5%) 25.52 KiB (1%) 504
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 36.478 μs (5%) 20.33 KiB (1%) 399
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.550 μs (5%) 1.33 KiB (1%) 32
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.345 μs (5%) 1.33 KiB (1%) 32
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 538.000 ns (5%) 1.25 KiB (1%) 20
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 406.910 ns (5%) 960 bytes (1%) 18
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 709.979 ns (5%) 1.78 KiB (1%) 29
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 560.611 ns (5%) 1.47 KiB (1%) 27
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 43.511 μs (5%) 18.31 KiB (1%) 387
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 27.441 μs (5%) 13.30 KiB (1%) 283
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.023 μs (5%) 352 bytes (1%) 9
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 835.632 ns (5%) 352 bytes (1%) 9
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 267.924 ns (5%) 448 bytes (1%) 12
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 258.077 ns (5%) 448 bytes (1%) 12
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 349.310 ns (5%) 768 bytes (1%) 19
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 337.932 ns (5%) 768 bytes (1%) 19
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 5.694 μs (5%) 3.93 KiB (1%) 95
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 5.660 μs (5%) 3.93 KiB (1%) 95
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 485.005 ns (5%) 160 bytes (1%) 4
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 476.500 ns (5%) 160 bytes (1%) 4
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 1.237 μs (5%) 3.73 KiB (1%) 43
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 888.023 ns (5%) 2.42 KiB (1%) 37
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.175 μs (5%) 9.80 KiB (1%) 54
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.761 μs (5%) 8.48 KiB (1%) 48
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 71.112 μs (5%) 34.69 KiB (1%) 702
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 52.187 μs (5%) 28.62 KiB (1%) 593
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 4.858 μs (5%) 1.23 KiB (1%) 32
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.782 μs (5%) 1.23 KiB (1%) 32
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 8.265 μs (5%) 5.78 KiB (1%) 113
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 7.624 μs (5%) 3.95 KiB (1%) 103
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 8.776 μs (5%) 8.98 KiB (1%) 130
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 8.265 μs (5%) 6.83 KiB (1%) 116
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 105.256 μs (5%) 42.25 KiB (1%) 861
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 65.573 μs (5%) 29.61 KiB (1%) 608
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.190 μs (5%) 1.83 KiB (1%) 57
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.560 μs (5%) 1.70 KiB (1%) 53
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.406 μs (5%) 3.58 KiB (1%) 63
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.329 μs (5%) 3.58 KiB (1%) 63
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.146 μs (5%) 3.92 KiB (1%) 72
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 4.056 μs (5%) 3.92 KiB (1%) 72
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 75.752 μs (5%) 38.77 KiB (1%) 918
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 60.372 μs (5%) 34.02 KiB (1%) 815
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.670 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.505 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 14.487 μs (5%) 22.08 KiB (1%) 412
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 14.386 μs (5%) 22.08 KiB (1%) 412
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 17.983 μs (5%) 22.30 KiB (1%) 419
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 18.024 μs (5%) 22.30 KiB (1%) 419
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 533.175 μs (5%) 293.05 KiB (1%) 7011
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 509.260 μs (5%) 288.30 KiB (1%) 6908
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 50.906 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 50.784 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.138 μs (5%) 400 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.091 μs (5%) 400 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.640 μs (5%) 624 bytes (1%) 17
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.566 μs (5%) 624 bytes (1%) 17
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 72.977 μs (5%) 35.95 KiB (1%) 903
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 57.397 μs (5%) 31.20 KiB (1%) 800
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.717 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.532 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.385 μs (5%) 1.83 KiB (1%) 30
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.061 μs (5%) 1.47 KiB (1%) 26
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.466 μs (5%) 7.78 KiB (1%) 43
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.812 μs (5%) 4.70 KiB (1%) 35
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 166.941 μs (5%) 86.44 KiB (1%) 1870
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 46.867 μs (5%) 29.38 KiB (1%) 727
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.132 μs (5%) 176 bytes (1%) 3
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.123 μs (5%) 176 bytes (1%) 3
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.680 μs (5%) 1.56 KiB (1%) 34
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.612 μs (5%) 1.56 KiB (1%) 34
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.827 μs (5%) 1.78 KiB (1%) 41
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.771 μs (5%) 1.78 KiB (1%) 41
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 26.800 μs (5%) 12.59 KiB (1%) 290
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 12.904 μs (5%) 7.84 KiB (1%) 187
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.114 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 970.737 ns (5%) 96 bytes (1%) 3
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 6.849 μs (5%) 5.81 KiB (1%) 117
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 6.691 μs (5%) 5.81 KiB (1%) 117
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 7.589 μs (5%) 6.16 KiB (1%) 126
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.471 μs (5%) 6.16 KiB (1%) 126
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 89.978 μs (5%) 49.09 KiB (1%) 1044
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 70.902 μs (5%) 44.34 KiB (1%) 941
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.208 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.318 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.030 μs (5%) 9.09 KiB (1%) 100
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 3.618 μs (5%) 7.84 KiB (1%) 92
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 5.985 μs (5%) 16.22 KiB (1%) 111
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.362 μs (5%) 14.97 KiB (1%) 103
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 107.991 μs (5%) 59.83 KiB (1%) 1164
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 88.325 μs (5%) 53.88 KiB (1%) 1054
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.380 μs (5%) 496 bytes (1%) 9
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.245 μs (5%) 496 bytes (1%) 9
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.446 μs (5%) 3.05 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 928.370 ns (5%) 1.48 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.791 μs (5%) 4.11 KiB (1%) 48
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.244 μs (5%) 2.55 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 37.990 μs (5%) 24.38 KiB (1%) 498
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 22.001 μs (5%) 17.39 KiB (1%) 366
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.214 μs (5%) 144 bytes (1%) 3
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.990 μs (5%) 144 bytes (1%) 3
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 423.910 ns (5%) 352 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 365.154 ns (5%) 352 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 546.128 ns (5%) 576 bytes (1%) 17
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 484.754 ns (5%) 576 bytes (1%) 17
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 31.479 μs (5%) 18.34 KiB (1%) 418
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 17.172 μs (5%) 12.92 KiB (1%) 296
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.880 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.628 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 29.735 μs (5%) 3.02 KiB (1%) 64
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 29.505 μs (5%) 2.70 KiB (1%) 62
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 19.256 μs (5%) 2.73 KiB (1%) 51
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 19.035 μs (5%) 2.42 KiB (1%) 49
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 60.533 μs (5%) 24.08 KiB (1%) 525
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 40.265 μs (5%) 18.34 KiB (1%) 401
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.220 μs (5%) 112 bytes (1%) 3
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.974 μs (5%) 112 bytes (1%) 3

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.11.0
Commit 501a4f25c2b (2024-10-07 11:40 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz       9792 s          0 s        828 s      29214 s          0 s
       #2     0 MHz      11009 s          0 s        800 s      28025 s          0 s
       #3     0 MHz       8781 s          0 s        777 s      30279 s          0 s
       #4     0 MHz       9237 s          0 s        764 s      29835 s          0 s
  Memory: 15.606491088867188 GB (12921.23046875 MB free)
  Uptime: 3991.43 sec
  Load Avg:  1.04  1.03  1.0
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             4
On-line CPU(s) list:                0-3
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7763 64-Core Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 2
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           4890.85
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                     AMD-V
Hypervisor vendor:                  Microsoft
Virtualization type:                full
L1d cache:                          64 KiB (2 instances)
L1i cache:                          64 KiB (2 instances)
L2 cache:                           1 MiB (2 instances)
L3 cache:                           32 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-3
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:    Vulnerable
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

@seabbs
Copy link
Collaborator

seabbs commented Oct 24, 2024

I think this was a test/dead so closing

@seabbs seabbs closed this Oct 24, 2024
@seabbs seabbs deleted the safe-ret-float branch October 24, 2024 11:05
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants