This repository includes the implementation of the GCNSplit algorithm for partitioning unbounded streaming graphs. GCNSplit is described in the aiDM'22 paper by Michał Zwolak, Zainab Abbas, Sonia Horchidan, Paris Carbone, and Vasiliki Kalavri.
You can cite the paper using the BibTeX below:
@inproceedings{zwolak2022gcnsplit,
title={GCNSplit: bounding the state of streaming graph partitioning},
author={Zwolak, Micha{\l} and Abbas, Zainab and Horchidan, Sonia and Carbone, Paris and Kalavri, Vasiliki},
booktitle={Proceedings of the Fifth International Workshop on Exploiting Artificial Intelligence Techniques for Data Management},
pages={1--12},
year={2022}
}
To run in docker container:
- Run
docker build -t local-torch-geometric .
intorch-geometric-docker
. - Run
docker build -t gcn-split .
in root folder. - If you want to store the data after the container is closed run
docker volume create gcn-split-vol
- To start the container
run:
docker run -dit --mount source=gcn-split-vol,target=/app --shm-size 8G --entrypoint=/bin/bash gcn-split
.
Then inside the container you are able to run the programs manually providing proper arguments.
In case of Bus error.
problem try setting shm-size
(shared memory) parameter of the container to a higher value.
If you want to run the streaming experiments (run_stream_partitioning.py
) on multi-core CPU it is necessary to set following environmental variables inside the container:
export MKL_NUM_THREADS=1
export NUMEXPR_NUM_THREADS=1
export OMP_NUM_THREADS=1
The following instructions must be carried out from within the container.
To enter the running container run:
docker exec -it --user=root CONTAINER_ID bash
CONTAINER_ID
can be retrieved from docker ps
command.
- Make sure that
twitch/DE/musae_DE_edges.csv
andtwitch/DE/musae_DE_features.json
exist. - Run
python src/main.py --epochs 3 --b_sz 20 --cut_coeff 1 --bal_coeff 0.00001 --learn_method gap --dataset twitch --agg_func MAX --num_classes 6
- After successful run the program should create two files - one containing full model and the other one containing GraphSAGE model only.
- Make sure that
./models/twitch-unsup/twitch-unsup-6-partitions.torch
,./twitch/ENGB/musae_ENGB_edges.csv
and./twitch/ENGB/musae_ENGB_features.json
exist. - Run
python src/run_stream_partitioning.py --learn_method gap --dataset twitch --num_classes 6 --max_load 1.01 --model ./models/twitch-unsup/twitch-unsup-6-partitions.torch --inf_b_sz 1000 --num_processes 1 --edge_file_path ./twitch/ENGB/musae_ENGB_edges.csv --feats_file_path ./twitch/ENGB/musae_ENGB_features.json
- This will produce the results file with the name based on partitioning and model configuration, e.g.:
ds-twitch-1000_win-size-twitch-unsup-6-partitions.torch_6_Sep16_18-34-36_RESULTS.csv
- Run
python src/run_evaluate.py --input_file "../ds-twitch-1000_win-size-twitch-unsup-6-partitions.torch_6_Sep16_18-34-36_RESULTS.csv" --num_classes 6
--dataset
- dataset name, possible options: reddit
, twitch
, papers100m
, deezer
, bitcoin
--agg_func=MAX
- aggregation function used by GCN; MAX
or MEAN
--epochs
- number of epochs of unsupervised (gap) training
--b_sz
- batch size (number of nodes) in the training
--cut_coeff
- coefficient of the min-cut part of the loss function
--bal_coeff
- coefficient of the balancing part of the loss function
--num_classes
- number of partitions
--bfs
- whether to use BFS algorithm for neighbourhood sampling
--graphsage_model
- path to pre-trained GraphSAGE model
--classification_model
- path to pre-trained partitioning model
--lr
- learning rate
--model
- path to the whole model (don't use graphsage_model
and classification_model
if you use this)
--cuda
- whether to use CUDA device
--learn_method
- possible options gap
(unsupervised)
--num_steps
- if you want to run the training for less than an epoch, you can specify simply the number of training
steps
Additionally there's experiments.conf
file, which contains the paths to the files used for training - training edges,
features and labeled training edges.
--learn_method
- learn method used for training
--dataset
- dataset name
--num_classes
- number of partitions
--max_load
- maximum normalized load that any partition can reach
--model
- model to use for partitioning
--inf_b_sz
- number of edges to partition in each batch (window)
--num_processes
- number of parallel partitioning processes
--edge_file_path
- path to the file containing edges to partition
--stream_features
- whether to stream the features alongside the edges; if not provided the whole feature set will be
loaded in memory
--feats_file_path
- path to the file containing features; if stream_features
is provided, then the file should
contain both the edges and the features in the format
(src_node, dst_node, [src_node_features_list], [dst_node_features_list])
--sorted_inference
- whether to use HighestAvailable heuristic
--with_train_adj
- whether to use a training graph as a neighbourhood context for each window; path to the training
edges is defined in experiments.conf
--input_file
- path to the file to evaluate (*RESULTS.csv
)
--num_classes
- number of partitions
--chunk_size=100000
- number of edges to read from the disk at once
Twitch, Deezer datasets are provided with this repository. Due to their sizes Reddit, Papers100m and Bitcoin datasets can be provided upon request.
Dataset | No. Partitions | alpha | beta | No. epochs | Batch Size |
---|---|---|---|---|---|
2 | 1 | 10-5 | 200 | All nodes | |
3 | 1 | 10-5 | 200 | All nodes | |
4 | 1 | 10-5 | 300 | All nodes | |
5 | 1 | 10-5 | 300 | All nodes | |
6 | 1 | 10-5 | 500 | All nodes | |
7 | 1 | 10-5 | 500 | All nodes | |
10 | 1 | 10-5 | 700 | All nodes | |
Twitch | 6 | 1 | 10-5 | 3 | 20 |
Deezer | 6 | 1 | 10-6 | 3 | 50 |
Bitcoin | 6 | 1 | 10-5 | 2 | 5 nodes |
Papers100m | 6 | 1 | 10-5 | 1 | 15 nodes |