Skip to content

Commit

Permalink
Merge pull request #200 from JesseLivezey/sklearn_update
Browse files Browse the repository at this point in the history
fixes due to sklearn changes
  • Loading branch information
akumar01 authored Mar 30, 2021
2 parents 4f6f924 + 7d25ef4 commit 4766eac
Show file tree
Hide file tree
Showing 9 changed files with 60 additions and 19 deletions.
10 changes: 7 additions & 3 deletions .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -3,16 +3,20 @@ os: linux
python:
- 3.6
- 3.7
- 3.8
matrix:
include:
- os: osx
language: generic
env: PYTHON=3.7.4
addons:
homebrew:
packages:
- openmpi
- pyenv-virtualenv
before_install:
- |
if [ "$TRAVIS_OS_NAME" = "osx" ]; then
brew update
brew install openmpi pyenv-virtualenv
pyenv install $PYTHON
export PYENV_VERSION=$PYTHON
export PATH="/Users/travis/.pyenv/shims:${PATH}"
Expand All @@ -33,7 +37,7 @@ install:
- python setup.py develop
- pip install pytest-cov
script:
- flake8 pyuoi tests docs/gallery
- flake8 pyuoi tests examples
- pytest --cov=./ tests
- sphinx-build -W -b html docs/source docs/build
after_success:
Expand Down
2 changes: 1 addition & 1 deletion pyuoi/decomposition/base.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import abc as _abc

from sklearn.linear_model.base import BaseEstimator
from sklearn.linear_model._base import BaseEstimator


class AbstractDecompositionModel(BaseEstimator, metaclass=_abc.ABCMeta):
Expand Down
2 changes: 1 addition & 1 deletion pyuoi/linear_model/base.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import abc as _abc
import numpy as np
import logging
from sklearn.linear_model.base import SparseCoefMixin
from sklearn.linear_model._base import SparseCoefMixin
from sklearn.metrics import r2_score, accuracy_score, log_loss
from sklearn.model_selection import train_test_split
from sklearn.utils import check_X_y
Expand Down
2 changes: 1 addition & 1 deletion pyuoi/linear_model/elasticnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
from .base import AbstractUoILinearRegressor

from sklearn.linear_model import LinearRegression
from sklearn.linear_model.coordinate_descent import _alpha_grid
from sklearn.linear_model._coordinate_descent import _alpha_grid
from sklearn.linear_model import ElasticNet


Expand Down
2 changes: 1 addition & 1 deletion pyuoi/linear_model/lasso.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

from sklearn.exceptions import NotFittedError
from sklearn.linear_model import Lasso, LinearRegression
from sklearn.linear_model.coordinate_descent import _alpha_grid
from sklearn.linear_model._coordinate_descent import _alpha_grid
try:
import pycasso
except ImportError:
Expand Down
57 changes: 46 additions & 11 deletions pyuoi/linear_model/logistic.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,6 @@
check_consistent_length, check_array)
from sklearn.utils.multiclass import check_classification_targets
from sklearn.utils.extmath import safe_sparse_dot, log_logistic, squared_norm
from sklearn.linear_model.logistic import (_check_multi_class,
_intercept_dot)
from sklearn.preprocessing import StandardScaler

from scipy.optimize import minimize
Expand Down Expand Up @@ -366,8 +364,6 @@ def fit(self, X, y, sample_weight=None, coef_mask=None):
-------
self : object
"""
solver = 'lbfgs'

if not isinstance(self.C, numbers.Number) or self.C < 0:
raise ValueError("Penalty term must be positive; got (C=%r)"
% self.C)
Expand All @@ -388,8 +384,12 @@ def fit(self, X, y, sample_weight=None, coef_mask=None):
self.classes_ = np.unique(y)
n_samples, n_features = X.shape

multi_class = _check_multi_class(self.multi_class, solver,
len(self.classes_))
multi_class = self.multi_class
if multi_class == 'auto':
if len(self.classes_) > 2:
multi_class = 'multinomial'
else:
multi_class = 'ovr'

n_classes = len(self.classes_)
classes_ = self.classes_
Expand Down Expand Up @@ -529,7 +529,6 @@ def _logistic_regression_path(X, y, Cs=48, fit_intercept=True,
n_iter : array, shape (n_cs,)
Actual number of iteration for each Cs.
"""
solver = 'lbfgs'
if isinstance(Cs, numbers.Integral):
Cs = np.logspace(-4, 4, Cs)

Expand All @@ -543,7 +542,11 @@ def _logistic_regression_path(X, y, Cs=48, fit_intercept=True,

classes = np.unique(y)

multi_class = _check_multi_class(multi_class, solver, len(classes))
if multi_class == 'auto':
if len(classes) > 2:
multi_class = 'multinomial'
else:
multi_class = 'ovr'

# If sample weights exist, convert them to array (support for lists)
# and check length
Expand All @@ -559,7 +562,7 @@ def _logistic_regression_path(X, y, Cs=48, fit_intercept=True,
# the class_weights are assigned after masking the labels with a OvR.
le = LabelEncoder()
if isinstance(class_weight, dict) or multi_class == 'multinomial':
class_weight_ = compute_class_weight(class_weight, classes, y)
class_weight_ = compute_class_weight(class_weight, classes=classes, y=y)
sample_weight *= class_weight_[le.fit_transform(y)]

# For doing a ovr, we need to mask the labels first. for the
Expand All @@ -574,8 +577,9 @@ def _logistic_regression_path(X, y, Cs=48, fit_intercept=True,
# for compute_class_weight

if class_weight == "balanced":
class_weight_ = compute_class_weight(class_weight, mask_classes,
y_bin)
class_weight_ = compute_class_weight(class_weight,
classes=mask_classes,
y=y_bin)
sample_weight *= class_weight_[le.fit_transform(y_bin)]

else:
Expand Down Expand Up @@ -847,3 +851,34 @@ def _multinomial_loss_grad(w, X, Y, alpha, mask, sample_weight):
if fit_intercept:
grad[:, -1] = diff.sum(axis=0) / n_samples
return loss, grad.ravel(), p


def _intercept_dot(w, X, y):
"""Computes y * np.dot(X, w).
It takes into consideration if the intercept should be fit or not.
Parameters
----------
w : ndarray of shape (n_features,) or (n_features + 1,)
Coefficient vector.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data.
y : ndarray of shape (n_samples,)
Array of labels.
Returns
-------
w : ndarray of shape (n_features,)
Coefficient vector without the intercept weight (w[-1]) if the
intercept should be fit. Unchanged otherwise.
c : float
The intercept.
yz : float
y * np.dot(X, w).
"""
c = 0.
if w.size == X.shape[1] + 1:
c = w[-1]
w = w[:-1]

z = safe_sparse_dot(X, w) + c
yz = y * z
return w, c, yz
1 change: 1 addition & 0 deletions pyuoi/linear_model/scikit-learn_license
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
Portions of logistic.py including
MaskedCoefLogisticRegression,
_logistic_regression_path,
_intercept_dot,
_logistic_loss_and_grad, and
_multinomial_loss_grad
are based on code from scikit-learn. The scikit-learn license is below.
Expand Down
1 change: 1 addition & 0 deletions requirements-dev.txt
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
-r requirements.txt
matplotlib
pytest
flake8
cython
Expand Down
2 changes: 1 addition & 1 deletion tests/test_uoi_lasso.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from sklearn.datasets import make_regression
from sklearn.linear_model import Lasso
from sklearn.metrics import r2_score
from sklearn.linear_model.coordinate_descent import _alpha_grid
from sklearn.linear_model._coordinate_descent import _alpha_grid
try:
import pycasso
except ImportError:
Expand Down

0 comments on commit 4766eac

Please sign in to comment.