forked from samtools/samtools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
zlib.h
1357 lines (1141 loc) · 64.6 KB
/
zlib.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.3, July 18th, 2005
Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Jean-loup Gailly Mark Adler
The data format used by the zlib library is described by RFCs (Request for
Comments) 1950 to 1952 in the files http://www.ietf.org/rfc/rfc1950.txt
(zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format).
*/
#ifndef ZLIB_H
#define ZLIB_H
#include "zconf.h"
#ifdef __cplusplus
extern "C" {
#endif
#define ZLIB_VERSION "1.2.3"
#define ZLIB_VERNUM 0x1230
/*
The 'zlib' compression library provides in-memory compression and
decompression functions, including integrity checks of the uncompressed
data. This version of the library supports only one compression method
(deflation) but other algorithms will be added later and will have the same
stream interface.
Compression can be done in a single step if the buffers are large
enough (for example if an input file is mmap'ed), or can be done by
repeated calls of the compression function. In the latter case, the
application must provide more input and/or consume the output
(providing more output space) before each call.
The compressed data format used by default by the in-memory functions is
the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped
around a deflate stream, which is itself documented in RFC 1951.
The library also supports reading and writing files in gzip (.gz) format
with an interface similar to that of stdio using the functions that start
with "gz". The gzip format is different from the zlib format. gzip is a
gzip wrapper, documented in RFC 1952, wrapped around a deflate stream.
This library can optionally read and write gzip streams in memory as well.
The zlib format was designed to be compact and fast for use in memory
and on communications channels. The gzip format was designed for single-
file compression on file systems, has a larger header than zlib to maintain
directory information, and uses a different, slower check method than zlib.
The library does not install any signal handler. The decoder checks
the consistency of the compressed data, so the library should never
crash even in case of corrupted input.
*/
typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
typedef void (*free_func) OF((voidpf opaque, voidpf address));
struct internal_state;
typedef struct z_stream_s {
Bytef *next_in; /* next input byte */
uInt avail_in; /* number of bytes available at next_in */
uLong total_in; /* total nb of input bytes read so far */
Bytef *next_out; /* next output byte should be put there */
uInt avail_out; /* remaining free space at next_out */
uLong total_out; /* total nb of bytes output so far */
char *msg; /* last error message, NULL if no error */
struct internal_state FAR *state; /* not visible by applications */
alloc_func zalloc; /* used to allocate the internal state */
free_func zfree; /* used to free the internal state */
voidpf opaque; /* private data object passed to zalloc and zfree */
int data_type; /* best guess about the data type: binary or text */
uLong adler; /* adler32 value of the uncompressed data */
uLong reserved; /* reserved for future use */
} z_stream;
typedef z_stream FAR *z_streamp;
/*
gzip header information passed to and from zlib routines. See RFC 1952
for more details on the meanings of these fields.
*/
typedef struct gz_header_s {
int text; /* true if compressed data believed to be text */
uLong time; /* modification time */
int xflags; /* extra flags (not used when writing a gzip file) */
int os; /* operating system */
Bytef *extra; /* pointer to extra field or Z_NULL if none */
uInt extra_len; /* extra field length (valid if extra != Z_NULL) */
uInt extra_max; /* space at extra (only when reading header) */
Bytef *name; /* pointer to zero-terminated file name or Z_NULL */
uInt name_max; /* space at name (only when reading header) */
Bytef *comment; /* pointer to zero-terminated comment or Z_NULL */
uInt comm_max; /* space at comment (only when reading header) */
int hcrc; /* true if there was or will be a header crc */
int done; /* true when done reading gzip header (not used
when writing a gzip file) */
} gz_header;
typedef gz_header FAR *gz_headerp;
/*
The application must update next_in and avail_in when avail_in has
dropped to zero. It must update next_out and avail_out when avail_out
has dropped to zero. The application must initialize zalloc, zfree and
opaque before calling the init function. All other fields are set by the
compression library and must not be updated by the application.
The opaque value provided by the application will be passed as the first
parameter for calls of zalloc and zfree. This can be useful for custom
memory management. The compression library attaches no meaning to the
opaque value.
zalloc must return Z_NULL if there is not enough memory for the object.
If zlib is used in a multi-threaded application, zalloc and zfree must be
thread safe.
On 16-bit systems, the functions zalloc and zfree must be able to allocate
exactly 65536 bytes, but will not be required to allocate more than this
if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS,
pointers returned by zalloc for objects of exactly 65536 bytes *must*
have their offset normalized to zero. The default allocation function
provided by this library ensures this (see zutil.c). To reduce memory
requirements and avoid any allocation of 64K objects, at the expense of
compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h).
The fields total_in and total_out can be used for statistics or
progress reports. After compression, total_in holds the total size of
the uncompressed data and may be saved for use in the decompressor
(particularly if the decompressor wants to decompress everything in
a single step).
*/
/* constants */
#define Z_NO_FLUSH 0
#define Z_PARTIAL_FLUSH 1 /* will be removed, use Z_SYNC_FLUSH instead */
#define Z_SYNC_FLUSH 2
#define Z_FULL_FLUSH 3
#define Z_FINISH 4
#define Z_BLOCK 5
/* Allowed flush values; see deflate() and inflate() below for details */
#define Z_OK 0
#define Z_STREAM_END 1
#define Z_NEED_DICT 2
#define Z_ERRNO (-1)
#define Z_STREAM_ERROR (-2)
#define Z_DATA_ERROR (-3)
#define Z_MEM_ERROR (-4)
#define Z_BUF_ERROR (-5)
#define Z_VERSION_ERROR (-6)
/* Return codes for the compression/decompression functions. Negative
* values are errors, positive values are used for special but normal events.
*/
#define Z_NO_COMPRESSION 0
#define Z_BEST_SPEED 1
#define Z_BEST_COMPRESSION 9
#define Z_DEFAULT_COMPRESSION (-1)
/* compression levels */
#define Z_FILTERED 1
#define Z_HUFFMAN_ONLY 2
#define Z_RLE 3
#define Z_FIXED 4
#define Z_DEFAULT_STRATEGY 0
/* compression strategy; see deflateInit2() below for details */
#define Z_BINARY 0
#define Z_TEXT 1
#define Z_ASCII Z_TEXT /* for compatibility with 1.2.2 and earlier */
#define Z_UNKNOWN 2
/* Possible values of the data_type field (though see inflate()) */
#define Z_DEFLATED 8
/* The deflate compression method (the only one supported in this version) */
#define Z_NULL 0 /* for initializing zalloc, zfree, opaque */
#define zlib_version zlibVersion()
/* for compatibility with versions < 1.0.2 */
/* basic functions */
ZEXTERN const char * ZEXPORT zlibVersion OF((void));
/* The application can compare zlibVersion and ZLIB_VERSION for consistency.
If the first character differs, the library code actually used is
not compatible with the zlib.h header file used by the application.
This check is automatically made by deflateInit and inflateInit.
*/
/*
ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level));
Initializes the internal stream state for compression. The fields
zalloc, zfree and opaque must be initialized before by the caller.
If zalloc and zfree are set to Z_NULL, deflateInit updates them to
use default allocation functions.
The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
1 gives best speed, 9 gives best compression, 0 gives no compression at
all (the input data is simply copied a block at a time).
Z_DEFAULT_COMPRESSION requests a default compromise between speed and
compression (currently equivalent to level 6).
deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_STREAM_ERROR if level is not a valid compression level,
Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible
with the version assumed by the caller (ZLIB_VERSION).
msg is set to null if there is no error message. deflateInit does not
perform any compression: this will be done by deflate().
*/
ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
/*
deflate compresses as much data as possible, and stops when the input
buffer becomes empty or the output buffer becomes full. It may introduce some
output latency (reading input without producing any output) except when
forced to flush.
The detailed semantics are as follows. deflate performs one or both of the
following actions:
- Compress more input starting at next_in and update next_in and avail_in
accordingly. If not all input can be processed (because there is not
enough room in the output buffer), next_in and avail_in are updated and
processing will resume at this point for the next call of deflate().
- Provide more output starting at next_out and update next_out and avail_out
accordingly. This action is forced if the parameter flush is non zero.
Forcing flush frequently degrades the compression ratio, so this parameter
should be set only when necessary (in interactive applications).
Some output may be provided even if flush is not set.
Before the call of deflate(), the application should ensure that at least
one of the actions is possible, by providing more input and/or consuming
more output, and updating avail_in or avail_out accordingly; avail_out
should never be zero before the call. The application can consume the
compressed output when it wants, for example when the output buffer is full
(avail_out == 0), or after each call of deflate(). If deflate returns Z_OK
and with zero avail_out, it must be called again after making room in the
output buffer because there might be more output pending.
Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to
decide how much data to accumualte before producing output, in order to
maximize compression.
If the parameter flush is set to Z_SYNC_FLUSH, all pending output is
flushed to the output buffer and the output is aligned on a byte boundary, so
that the decompressor can get all input data available so far. (In particular
avail_in is zero after the call if enough output space has been provided
before the call.) Flushing may degrade compression for some compression
algorithms and so it should be used only when necessary.
If flush is set to Z_FULL_FLUSH, all output is flushed as with
Z_SYNC_FLUSH, and the compression state is reset so that decompression can
restart from this point if previous compressed data has been damaged or if
random access is desired. Using Z_FULL_FLUSH too often can seriously degrade
compression.
If deflate returns with avail_out == 0, this function must be called again
with the same value of the flush parameter and more output space (updated
avail_out), until the flush is complete (deflate returns with non-zero
avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
avail_out is greater than six to avoid repeated flush markers due to
avail_out == 0 on return.
If the parameter flush is set to Z_FINISH, pending input is processed,
pending output is flushed and deflate returns with Z_STREAM_END if there
was enough output space; if deflate returns with Z_OK, this function must be
called again with Z_FINISH and more output space (updated avail_out) but no
more input data, until it returns with Z_STREAM_END or an error. After
deflate has returned Z_STREAM_END, the only possible operations on the
stream are deflateReset or deflateEnd.
Z_FINISH can be used immediately after deflateInit if all the compression
is to be done in a single step. In this case, avail_out must be at least
the value returned by deflateBound (see below). If deflate does not return
Z_STREAM_END, then it must be called again as described above.
deflate() sets strm->adler to the adler32 checksum of all input read
so far (that is, total_in bytes).
deflate() may update strm->data_type if it can make a good guess about
the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered
binary. This field is only for information purposes and does not affect
the compression algorithm in any manner.
deflate() returns Z_OK if some progress has been made (more input
processed or more output produced), Z_STREAM_END if all input has been
consumed and all output has been produced (only when flush is set to
Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
if next_in or next_out was NULL), Z_BUF_ERROR if no progress is possible
(for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not
fatal, and deflate() can be called again with more input and more output
space to continue compressing.
*/
ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm));
/*
All dynamically allocated data structures for this stream are freed.
This function discards any unprocessed input and does not flush any
pending output.
deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
stream state was inconsistent, Z_DATA_ERROR if the stream was freed
prematurely (some input or output was discarded). In the error case,
msg may be set but then points to a static string (which must not be
deallocated).
*/
/*
ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
Initializes the internal stream state for decompression. The fields
next_in, avail_in, zalloc, zfree and opaque must be initialized before by
the caller. If next_in is not Z_NULL and avail_in is large enough (the exact
value depends on the compression method), inflateInit determines the
compression method from the zlib header and allocates all data structures
accordingly; otherwise the allocation will be deferred to the first call of
inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to
use default allocation functions.
inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
version assumed by the caller. msg is set to null if there is no error
message. inflateInit does not perform any decompression apart from reading
the zlib header if present: this will be done by inflate(). (So next_in and
avail_in may be modified, but next_out and avail_out are unchanged.)
*/
ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
/*
inflate decompresses as much data as possible, and stops when the input
buffer becomes empty or the output buffer becomes full. It may introduce
some output latency (reading input without producing any output) except when
forced to flush.
The detailed semantics are as follows. inflate performs one or both of the
following actions:
- Decompress more input starting at next_in and update next_in and avail_in
accordingly. If not all input can be processed (because there is not
enough room in the output buffer), next_in is updated and processing
will resume at this point for the next call of inflate().
- Provide more output starting at next_out and update next_out and avail_out
accordingly. inflate() provides as much output as possible, until there
is no more input data or no more space in the output buffer (see below
about the flush parameter).
Before the call of inflate(), the application should ensure that at least
one of the actions is possible, by providing more input and/or consuming
more output, and updating the next_* and avail_* values accordingly.
The application can consume the uncompressed output when it wants, for
example when the output buffer is full (avail_out == 0), or after each
call of inflate(). If inflate returns Z_OK and with zero avail_out, it
must be called again after making room in the output buffer because there
might be more output pending.
The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH,
Z_FINISH, or Z_BLOCK. Z_SYNC_FLUSH requests that inflate() flush as much
output as possible to the output buffer. Z_BLOCK requests that inflate() stop
if and when it gets to the next deflate block boundary. When decoding the
zlib or gzip format, this will cause inflate() to return immediately after
the header and before the first block. When doing a raw inflate, inflate()
will go ahead and process the first block, and will return when it gets to
the end of that block, or when it runs out of data.
The Z_BLOCK option assists in appending to or combining deflate streams.
Also to assist in this, on return inflate() will set strm->data_type to the
number of unused bits in the last byte taken from strm->next_in, plus 64
if inflate() is currently decoding the last block in the deflate stream,
plus 128 if inflate() returned immediately after decoding an end-of-block
code or decoding the complete header up to just before the first byte of the
deflate stream. The end-of-block will not be indicated until all of the
uncompressed data from that block has been written to strm->next_out. The
number of unused bits may in general be greater than seven, except when
bit 7 of data_type is set, in which case the number of unused bits will be
less than eight.
inflate() should normally be called until it returns Z_STREAM_END or an
error. However if all decompression is to be performed in a single step
(a single call of inflate), the parameter flush should be set to
Z_FINISH. In this case all pending input is processed and all pending
output is flushed; avail_out must be large enough to hold all the
uncompressed data. (The size of the uncompressed data may have been saved
by the compressor for this purpose.) The next operation on this stream must
be inflateEnd to deallocate the decompression state. The use of Z_FINISH
is never required, but can be used to inform inflate that a faster approach
may be used for the single inflate() call.
In this implementation, inflate() always flushes as much output as
possible to the output buffer, and always uses the faster approach on the
first call. So the only effect of the flush parameter in this implementation
is on the return value of inflate(), as noted below, or when it returns early
because Z_BLOCK is used.
If a preset dictionary is needed after this call (see inflateSetDictionary
below), inflate sets strm->adler to the adler32 checksum of the dictionary
chosen by the compressor and returns Z_NEED_DICT; otherwise it sets
strm->adler to the adler32 checksum of all output produced so far (that is,
total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described
below. At the end of the stream, inflate() checks that its computed adler32
checksum is equal to that saved by the compressor and returns Z_STREAM_END
only if the checksum is correct.
inflate() will decompress and check either zlib-wrapped or gzip-wrapped
deflate data. The header type is detected automatically. Any information
contained in the gzip header is not retained, so applications that need that
information should instead use raw inflate, see inflateInit2() below, or
inflateBack() and perform their own processing of the gzip header and
trailer.
inflate() returns Z_OK if some progress has been made (more input processed
or more output produced), Z_STREAM_END if the end of the compressed data has
been reached and all uncompressed output has been produced, Z_NEED_DICT if a
preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
corrupted (input stream not conforming to the zlib format or incorrect check
value), Z_STREAM_ERROR if the stream structure was inconsistent (for example
if next_in or next_out was NULL), Z_MEM_ERROR if there was not enough memory,
Z_BUF_ERROR if no progress is possible or if there was not enough room in the
output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and
inflate() can be called again with more input and more output space to
continue decompressing. If Z_DATA_ERROR is returned, the application may then
call inflateSync() to look for a good compression block if a partial recovery
of the data is desired.
*/
ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm));
/*
All dynamically allocated data structures for this stream are freed.
This function discards any unprocessed input and does not flush any
pending output.
inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state
was inconsistent. In the error case, msg may be set but then points to a
static string (which must not be deallocated).
*/
/* Advanced functions */
/*
The following functions are needed only in some special applications.
*/
/*
ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm,
int level,
int method,
int windowBits,
int memLevel,
int strategy));
This is another version of deflateInit with more compression options. The
fields next_in, zalloc, zfree and opaque must be initialized before by
the caller.
The method parameter is the compression method. It must be Z_DEFLATED in
this version of the library.
The windowBits parameter is the base two logarithm of the window size
(the size of the history buffer). It should be in the range 8..15 for this
version of the library. Larger values of this parameter result in better
compression at the expense of memory usage. The default value is 15 if
deflateInit is used instead.
windowBits can also be -8..-15 for raw deflate. In this case, -windowBits
determines the window size. deflate() will then generate raw deflate data
with no zlib header or trailer, and will not compute an adler32 check value.
windowBits can also be greater than 15 for optional gzip encoding. Add
16 to windowBits to write a simple gzip header and trailer around the
compressed data instead of a zlib wrapper. The gzip header will have no
file name, no extra data, no comment, no modification time (set to zero),
no header crc, and the operating system will be set to 255 (unknown). If a
gzip stream is being written, strm->adler is a crc32 instead of an adler32.
The memLevel parameter specifies how much memory should be allocated
for the internal compression state. memLevel=1 uses minimum memory but
is slow and reduces compression ratio; memLevel=9 uses maximum memory
for optimal speed. The default value is 8. See zconf.h for total memory
usage as a function of windowBits and memLevel.
The strategy parameter is used to tune the compression algorithm. Use the
value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a
filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no
string match), or Z_RLE to limit match distances to one (run-length
encoding). Filtered data consists mostly of small values with a somewhat
random distribution. In this case, the compression algorithm is tuned to
compress them better. The effect of Z_FILTERED is to force more Huffman
coding and less string matching; it is somewhat intermediate between
Z_DEFAULT and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as fast as
Z_HUFFMAN_ONLY, but give better compression for PNG image data. The strategy
parameter only affects the compression ratio but not the correctness of the
compressed output even if it is not set appropriately. Z_FIXED prevents the
use of dynamic Huffman codes, allowing for a simpler decoder for special
applications.
deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_STREAM_ERROR if a parameter is invalid (such as an invalid
method). msg is set to null if there is no error message. deflateInit2 does
not perform any compression: this will be done by deflate().
*/
ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
const Bytef *dictionary,
uInt dictLength));
/*
Initializes the compression dictionary from the given byte sequence
without producing any compressed output. This function must be called
immediately after deflateInit, deflateInit2 or deflateReset, before any
call of deflate. The compressor and decompressor must use exactly the same
dictionary (see inflateSetDictionary).
The dictionary should consist of strings (byte sequences) that are likely
to be encountered later in the data to be compressed, with the most commonly
used strings preferably put towards the end of the dictionary. Using a
dictionary is most useful when the data to be compressed is short and can be
predicted with good accuracy; the data can then be compressed better than
with the default empty dictionary.
Depending on the size of the compression data structures selected by
deflateInit or deflateInit2, a part of the dictionary may in effect be
discarded, for example if the dictionary is larger than the window size in
deflate or deflate2. Thus the strings most likely to be useful should be
put at the end of the dictionary, not at the front. In addition, the
current implementation of deflate will use at most the window size minus
262 bytes of the provided dictionary.
Upon return of this function, strm->adler is set to the adler32 value
of the dictionary; the decompressor may later use this value to determine
which dictionary has been used by the compressor. (The adler32 value
applies to the whole dictionary even if only a subset of the dictionary is
actually used by the compressor.) If a raw deflate was requested, then the
adler32 value is not computed and strm->adler is not set.
deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
parameter is invalid (such as NULL dictionary) or the stream state is
inconsistent (for example if deflate has already been called for this stream
or if the compression method is bsort). deflateSetDictionary does not
perform any compression: this will be done by deflate().
*/
ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest,
z_streamp source));
/*
Sets the destination stream as a complete copy of the source stream.
This function can be useful when several compression strategies will be
tried, for example when there are several ways of pre-processing the input
data with a filter. The streams that will be discarded should then be freed
by calling deflateEnd. Note that deflateCopy duplicates the internal
compression state which can be quite large, so this strategy is slow and
can consume lots of memory.
deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
(such as zalloc being NULL). msg is left unchanged in both source and
destination.
*/
ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm));
/*
This function is equivalent to deflateEnd followed by deflateInit,
but does not free and reallocate all the internal compression state.
The stream will keep the same compression level and any other attributes
that may have been set by deflateInit2.
deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent (such as zalloc or state being NULL).
*/
ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
int level,
int strategy));
/*
Dynamically update the compression level and compression strategy. The
interpretation of level and strategy is as in deflateInit2. This can be
used to switch between compression and straight copy of the input data, or
to switch to a different kind of input data requiring a different
strategy. If the compression level is changed, the input available so far
is compressed with the old level (and may be flushed); the new level will
take effect only at the next call of deflate().
Before the call of deflateParams, the stream state must be set as for
a call of deflate(), since the currently available input may have to
be compressed and flushed. In particular, strm->avail_out must be non-zero.
deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source
stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR
if strm->avail_out was zero.
*/
ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm,
int good_length,
int max_lazy,
int nice_length,
int max_chain));
/*
Fine tune deflate's internal compression parameters. This should only be
used by someone who understands the algorithm used by zlib's deflate for
searching for the best matching string, and even then only by the most
fanatic optimizer trying to squeeze out the last compressed bit for their
specific input data. Read the deflate.c source code for the meaning of the
max_lazy, good_length, nice_length, and max_chain parameters.
deflateTune() can be called after deflateInit() or deflateInit2(), and
returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream.
*/
ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm,
uLong sourceLen));
/*
deflateBound() returns an upper bound on the compressed size after
deflation of sourceLen bytes. It must be called after deflateInit()
or deflateInit2(). This would be used to allocate an output buffer
for deflation in a single pass, and so would be called before deflate().
*/
ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm,
int bits,
int value));
/*
deflatePrime() inserts bits in the deflate output stream. The intent
is that this function is used to start off the deflate output with the
bits leftover from a previous deflate stream when appending to it. As such,
this function can only be used for raw deflate, and must be used before the
first deflate() call after a deflateInit2() or deflateReset(). bits must be
less than or equal to 16, and that many of the least significant bits of
value will be inserted in the output.
deflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent.
*/
ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm,
gz_headerp head));
/*
deflateSetHeader() provides gzip header information for when a gzip
stream is requested by deflateInit2(). deflateSetHeader() may be called
after deflateInit2() or deflateReset() and before the first call of
deflate(). The text, time, os, extra field, name, and comment information
in the provided gz_header structure are written to the gzip header (xflag is
ignored -- the extra flags are set according to the compression level). The
caller must assure that, if not Z_NULL, name and comment are terminated with
a zero byte, and that if extra is not Z_NULL, that extra_len bytes are
available there. If hcrc is true, a gzip header crc is included. Note that
the current versions of the command-line version of gzip (up through version
1.3.x) do not support header crc's, and will report that it is a "multi-part
gzip file" and give up.
If deflateSetHeader is not used, the default gzip header has text false,
the time set to zero, and os set to 255, with no extra, name, or comment
fields. The gzip header is returned to the default state by deflateReset().
deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent.
*/
/*
ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm,
int windowBits));
This is another version of inflateInit with an extra parameter. The
fields next_in, avail_in, zalloc, zfree and opaque must be initialized
before by the caller.
The windowBits parameter is the base two logarithm of the maximum window
size (the size of the history buffer). It should be in the range 8..15 for
this version of the library. The default value is 15 if inflateInit is used
instead. windowBits must be greater than or equal to the windowBits value
provided to deflateInit2() while compressing, or it must be equal to 15 if
deflateInit2() was not used. If a compressed stream with a larger window
size is given as input, inflate() will return with the error code
Z_DATA_ERROR instead of trying to allocate a larger window.
windowBits can also be -8..-15 for raw inflate. In this case, -windowBits
determines the window size. inflate() will then process raw deflate data,
not looking for a zlib or gzip header, not generating a check value, and not
looking for any check values for comparison at the end of the stream. This
is for use with other formats that use the deflate compressed data format
such as zip. Those formats provide their own check values. If a custom
format is developed using the raw deflate format for compressed data, it is
recommended that a check value such as an adler32 or a crc32 be applied to
the uncompressed data as is done in the zlib, gzip, and zip formats. For
most applications, the zlib format should be used as is. Note that comments
above on the use in deflateInit2() applies to the magnitude of windowBits.
windowBits can also be greater than 15 for optional gzip decoding. Add
32 to windowBits to enable zlib and gzip decoding with automatic header
detection, or add 16 to decode only the gzip format (the zlib format will
return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is
a crc32 instead of an adler32.
inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_STREAM_ERROR if a parameter is invalid (such as a null strm). msg
is set to null if there is no error message. inflateInit2 does not perform
any decompression apart from reading the zlib header if present: this will
be done by inflate(). (So next_in and avail_in may be modified, but next_out
and avail_out are unchanged.)
*/
ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
const Bytef *dictionary,
uInt dictLength));
/*
Initializes the decompression dictionary from the given uncompressed byte
sequence. This function must be called immediately after a call of inflate,
if that call returned Z_NEED_DICT. The dictionary chosen by the compressor
can be determined from the adler32 value returned by that call of inflate.
The compressor and decompressor must use exactly the same dictionary (see
deflateSetDictionary). For raw inflate, this function can be called
immediately after inflateInit2() or inflateReset() and before any call of
inflate() to set the dictionary. The application must insure that the
dictionary that was used for compression is provided.
inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
parameter is invalid (such as NULL dictionary) or the stream state is
inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the
expected one (incorrect adler32 value). inflateSetDictionary does not
perform any decompression: this will be done by subsequent calls of
inflate().
*/
ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm));
/*
Skips invalid compressed data until a full flush point (see above the
description of deflate with Z_FULL_FLUSH) can be found, or until all
available input is skipped. No output is provided.
inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR
if no more input was provided, Z_DATA_ERROR if no flush point has been found,
or Z_STREAM_ERROR if the stream structure was inconsistent. In the success
case, the application may save the current current value of total_in which
indicates where valid compressed data was found. In the error case, the
application may repeatedly call inflateSync, providing more input each time,
until success or end of the input data.
*/
ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest,
z_streamp source));
/*
Sets the destination stream as a complete copy of the source stream.
This function can be useful when randomly accessing a large stream. The
first pass through the stream can periodically record the inflate state,
allowing restarting inflate at those points when randomly accessing the
stream.
inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
(such as zalloc being NULL). msg is left unchanged in both source and
destination.
*/
ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm));
/*
This function is equivalent to inflateEnd followed by inflateInit,
but does not free and reallocate all the internal decompression state.
The stream will keep attributes that may have been set by inflateInit2.
inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent (such as zalloc or state being NULL).
*/
ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm,
int bits,
int value));
/*
This function inserts bits in the inflate input stream. The intent is
that this function is used to start inflating at a bit position in the
middle of a byte. The provided bits will be used before any bytes are used
from next_in. This function should only be used with raw inflate, and
should be used before the first inflate() call after inflateInit2() or
inflateReset(). bits must be less than or equal to 16, and that many of the
least significant bits of value will be inserted in the input.
inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent.
*/
ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm,
gz_headerp head));
/*
inflateGetHeader() requests that gzip header information be stored in the
provided gz_header structure. inflateGetHeader() may be called after
inflateInit2() or inflateReset(), and before the first call of inflate().
As inflate() processes the gzip stream, head->done is zero until the header
is completed, at which time head->done is set to one. If a zlib stream is
being decoded, then head->done is set to -1 to indicate that there will be
no gzip header information forthcoming. Note that Z_BLOCK can be used to
force inflate() to return immediately after header processing is complete
and before any actual data is decompressed.
The text, time, xflags, and os fields are filled in with the gzip header
contents. hcrc is set to true if there is a header CRC. (The header CRC
was valid if done is set to one.) If extra is not Z_NULL, then extra_max
contains the maximum number of bytes to write to extra. Once done is true,
extra_len contains the actual extra field length, and extra contains the
extra field, or that field truncated if extra_max is less than extra_len.
If name is not Z_NULL, then up to name_max characters are written there,
terminated with a zero unless the length is greater than name_max. If
comment is not Z_NULL, then up to comm_max characters are written there,
terminated with a zero unless the length is greater than comm_max. When
any of extra, name, or comment are not Z_NULL and the respective field is
not present in the header, then that field is set to Z_NULL to signal its
absence. This allows the use of deflateSetHeader() with the returned
structure to duplicate the header. However if those fields are set to
allocated memory, then the application will need to save those pointers
elsewhere so that they can be eventually freed.
If inflateGetHeader is not used, then the header information is simply
discarded. The header is always checked for validity, including the header
CRC if present. inflateReset() will reset the process to discard the header
information. The application would need to call inflateGetHeader() again to
retrieve the header from the next gzip stream.
inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent.
*/
/*
ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits,
unsigned char FAR *window));
Initialize the internal stream state for decompression using inflateBack()
calls. The fields zalloc, zfree and opaque in strm must be initialized
before the call. If zalloc and zfree are Z_NULL, then the default library-
derived memory allocation routines are used. windowBits is the base two
logarithm of the window size, in the range 8..15. window is a caller
supplied buffer of that size. Except for special applications where it is
assured that deflate was used with small window sizes, windowBits must be 15
and a 32K byte window must be supplied to be able to decompress general
deflate streams.
See inflateBack() for the usage of these routines.
inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of
the paramaters are invalid, Z_MEM_ERROR if the internal state could not
be allocated, or Z_VERSION_ERROR if the version of the library does not
match the version of the header file.
*/
typedef unsigned (*in_func) OF((void FAR *, unsigned char FAR * FAR *));
typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned));
ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm,
in_func in, void FAR *in_desc,
out_func out, void FAR *out_desc));
/*
inflateBack() does a raw inflate with a single call using a call-back
interface for input and output. This is more efficient than inflate() for
file i/o applications in that it avoids copying between the output and the
sliding window by simply making the window itself the output buffer. This
function trusts the application to not change the output buffer passed by
the output function, at least until inflateBack() returns.
inflateBackInit() must be called first to allocate the internal state
and to initialize the state with the user-provided window buffer.
inflateBack() may then be used multiple times to inflate a complete, raw
deflate stream with each call. inflateBackEnd() is then called to free
the allocated state.
A raw deflate stream is one with no zlib or gzip header or trailer.
This routine would normally be used in a utility that reads zip or gzip
files and writes out uncompressed files. The utility would decode the
header and process the trailer on its own, hence this routine expects
only the raw deflate stream to decompress. This is different from the
normal behavior of inflate(), which expects either a zlib or gzip header and
trailer around the deflate stream.
inflateBack() uses two subroutines supplied by the caller that are then
called by inflateBack() for input and output. inflateBack() calls those
routines until it reads a complete deflate stream and writes out all of the
uncompressed data, or until it encounters an error. The function's
parameters and return types are defined above in the in_func and out_func
typedefs. inflateBack() will call in(in_desc, &buf) which should return the
number of bytes of provided input, and a pointer to that input in buf. If
there is no input available, in() must return zero--buf is ignored in that
case--and inflateBack() will return a buffer error. inflateBack() will call
out(out_desc, buf, len) to write the uncompressed data buf[0..len-1]. out()
should return zero on success, or non-zero on failure. If out() returns
non-zero, inflateBack() will return with an error. Neither in() nor out()
are permitted to change the contents of the window provided to
inflateBackInit(), which is also the buffer that out() uses to write from.
The length written by out() will be at most the window size. Any non-zero
amount of input may be provided by in().
For convenience, inflateBack() can be provided input on the first call by
setting strm->next_in and strm->avail_in. If that input is exhausted, then
in() will be called. Therefore strm->next_in must be initialized before
calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called
immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in
must also be initialized, and then if strm->avail_in is not zero, input will
initially be taken from strm->next_in[0 .. strm->avail_in - 1].
The in_desc and out_desc parameters of inflateBack() is passed as the
first parameter of in() and out() respectively when they are called. These
descriptors can be optionally used to pass any information that the caller-
supplied in() and out() functions need to do their job.
On return, inflateBack() will set strm->next_in and strm->avail_in to
pass back any unused input that was provided by the last in() call. The
return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR
if in() or out() returned an error, Z_DATA_ERROR if there was a format
error in the deflate stream (in which case strm->msg is set to indicate the
nature of the error), or Z_STREAM_ERROR if the stream was not properly
initialized. In the case of Z_BUF_ERROR, an input or output error can be
distinguished using strm->next_in which will be Z_NULL only if in() returned
an error. If strm->next is not Z_NULL, then the Z_BUF_ERROR was due to
out() returning non-zero. (in() will always be called before out(), so
strm->next_in is assured to be defined if out() returns non-zero.) Note
that inflateBack() cannot return Z_OK.
*/
ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm));
/*
All memory allocated by inflateBackInit() is freed.
inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream
state was inconsistent.
*/
ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void));
/* Return flags indicating compile-time options.
Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other:
1.0: size of uInt
3.2: size of uLong
5.4: size of voidpf (pointer)
7.6: size of z_off_t
Compiler, assembler, and debug options:
8: DEBUG
9: ASMV or ASMINF -- use ASM code
10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention
11: 0 (reserved)
One-time table building (smaller code, but not thread-safe if true):
12: BUILDFIXED -- build static block decoding tables when needed
13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed
14,15: 0 (reserved)
Library content (indicates missing functionality):
16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking
deflate code when not needed)
17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect
and decode gzip streams (to avoid linking crc code)
18-19: 0 (reserved)
Operation variations (changes in library functionality):
20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate
21: FASTEST -- deflate algorithm with only one, lowest compression level
22,23: 0 (reserved)
The sprintf variant used by gzprintf (zero is best):
24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format
25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure!
26: 0 = returns value, 1 = void -- 1 means inferred string length returned
Remainder:
27-31: 0 (reserved)
*/
/* utility functions */