forked from gpertea/gclib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GThreads.h
897 lines (810 loc) · 26.5 KB
/
GThreads.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
/*
GThread - multi-platform thread support
this is heavily based on the source code of TinyThread++ 1.0 package by Marcus Geelnard
(with only minor modifications and namespace changes)
Original Copyright notice below
*/
/*
Copyright (c) 2010 Marcus Geelnard
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
*/
#ifndef _GTHREADS_
#define _GTHREADS_
/// @file
/// @mainpage TinyThread++ API Reference
///
/// @section intro_sec Introduction
/// TinyThread++ is a minimal, portable implementation of basic threading
/// classes for C++.
///
/// They closely mimic the functionality and naming of the C++11 standard, and
/// should be easily replaceable with the corresponding std:: variants.
///
/// @section port_sec Portability
/// The Win32 variant uses the native Win32 API for implementing the thread
/// classes, while for other systems, the POSIX threads API (pthread) is used.
///
/// @section class_sec Classes
/// In order to mimic the threading API of the C++11 standard, subsets of
/// several classes are provided. The fundamental classes are:
/// @li GThread
/// @li GMutex
/// @li GRecursiveMutex
/// @li GConditionVariable
/// @li GLockGuard
/// @li GFastMutex
///
/// @section misc_sec Miscellaneous
/// The following special keywords are available: #thread_local.
///
/// For more detailed information (including additional classes), browse the
/// different sections of this documentation. A good place to start is:
/// tinythread.h.
// Which platform are we on?
#if !defined(_GTHREADS_PLATFORM_DEFINED_)
#if defined(_WIN32) || defined(__WIN32__) || defined(__WINDOWS__)
#define _GTHREADS_WIN32_
#else
#define _GTHREADS_POSIX_
#endif
#define _GTHREADS_PLATFORM_DEFINED_
#endif
// Check if we can support the assembly language level implementation (otherwise
// revert to the system API)
#if (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))) || \
(defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))) || \
(defined(__GNUC__) && (defined(__ppc__)))
#define _GFASTMUTEX_ASM_
#else
#define _FAST_MUTEX_SYS_
#endif
// Platform specific includes
#if defined(_GTHREADS_WIN32_)
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#define __UNDEF_LEAN_AND_MEAN
#endif
#include <windows.h>
#ifdef __UNDEF_LEAN_AND_MEAN
#undef WIN32_LEAN_AND_MEAN
#undef __UNDEF_LEAN_AND_MEAN
#endif
#else
#include <pthread.h>
#include <signal.h>
#include <sched.h>
#include <unistd.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
/// TinyThread++ version (major number).
#define TINYTHREAD_VERSION_MAJOR 1
/// TinyThread++ version (minor number).
#define TINYTHREAD_VERSION_MINOR 1
/// TinyThread++ version (full version).
#define TINYTHREAD_VERSION (TINYTHREAD_VERSION_MAJOR * 100 + TINYTHREAD_VERSION_MINOR)
// Do we have a fully featured C++11 compiler?
#if (__cplusplus > 199711L) || (defined(__STDCXX_VERSION__) && (__STDCXX_VERSION__ >= 201001L))
#define _GTHREADS_CPP11_
#endif
// ...at least partial C++11?
#if defined(_GTHREADS_CPP11_) || defined(__GXX_EXPERIMENTAL_CXX0X__) || defined(__GXX_EXPERIMENTAL_CPP0X__)
#define _GTHREADS_CPP11_PARTIAL_
#endif
// Macro for disabling assignments of objects.
#ifdef _GTHREADS_CPP11_PARTIAL_
#define _GTHREADS_DISABLE_ASSIGNMENT(name) \
name(const name&) = delete; \
name& operator=(const name&) = delete;
#else
#define _GTHREADS_DISABLE_ASSIGNMENT(name) \
name(const name&); \
name& operator=(const name&);
#endif
/// @def thread_local
/// Thread local storage keyword.
/// A variable that is declared with the \c thread_local keyword makes the
/// value of the variable local to each thread (known as thread-local storage,
/// or TLS). Example usage:
/// @code
/// // This variable is local to each thread.
/// thread_local int variable;
/// @endcode
/// @note The \c thread_local keyword is a macro that maps to the corresponding
/// compiler directive (e.g. \c __declspec(thread)). While the C++11 standard
/// allows for non-trivial types (e.g. classes with constructors and
/// destructors) to be declared with the \c thread_local keyword, most pre-C++11
/// compilers only allow for trivial types (e.g. \c int). So, to guarantee
/// portable code, only use trivial types for thread local storage.
/// @note This directive is currently not supported on Mac OS X (it will give
/// a compiler error), since compile-time TLS is not supported in the Mac OS X
/// executable format. Also, some older versions of MinGW (before GCC 4.x) do
/// not support this directive.
/// @hideinitializer
#if !defined(_GTHREADS_CPP11_) && !defined(thread_local)
#if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
#define thread_local __thread
#else
#define thread_local __declspec(thread)
#endif
#endif
// HACK: Mac OS X and early MinGW do not support thread-local storage
#if defined(__APPLE__) || (defined(__MINGW32__) && (__GNUC__ < 4))
#define GTHREADS_NO_TLS
#endif
/// Main name space for TinyThread++.
/// This namespace is more or less equivalent to the \c std namespace for the
/// C++11 thread classes. For instance, the tthread::mutex class corresponds to
/// the std::mutex class.
//namespace tthread {
void gthreads_errExit(int err, const char* msg=NULL);
#define pthreads_err(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)
/// GMutex class
/// This is a mutual exclusion object for synchronizing access to shared
/// memory areas for several threads. The mutex is non-recursive (i.e. a
/// program may deadlock if the thread that owns a mutex object calls lock()
/// on that object).
/// @see recursive_mutex
class GMutex {
public:
/// Constructor.
GMutex()
#if defined(_GTHREADS_WIN32_)
: mAlreadyLocked(false)
#endif
{
#if defined(_GTHREADS_WIN32_)
InitializeCriticalSection(&mHandle);
#else
pthread_mutex_init(&mHandle, NULL);
#endif
}
/// Destructor.
~GMutex()
{
#if defined(_GTHREADS_WIN32_)
DeleteCriticalSection(&mHandle);
#else
pthread_mutex_destroy(&mHandle);
#endif
}
/// Lock the mutex.
/// The method will block the calling thread until a lock on the mutex can
/// be obtained. The mutex remains locked until \c unlock() is called.
/// @see lock_guard
inline void lock()
{
#if defined(_GTHREADS_WIN32_)
EnterCriticalSection(&mHandle);
while(mAlreadyLocked) Sleep(1000); // Simulate deadlock...
mAlreadyLocked = true;
#else
pthread_mutex_lock(&mHandle);
#endif
}
/// Try to lock the mutex.
/// The method will try to lock the mutex. If it fails, the function will
/// return immediately (non-blocking).
/// @return \c true if the lock was acquired, or \c false if the lock could
/// not be acquired.
inline bool try_lock()
{
#if defined(_GTHREADS_WIN32_)
bool ret = (TryEnterCriticalSection(&mHandle) ? true : false);
if(ret && mAlreadyLocked)
{
LeaveCriticalSection(&mHandle);
ret = false;
}
return ret;
#else
return (pthread_mutex_trylock(&mHandle) == 0) ? true : false;
#endif
}
/// Unlock the mutex.
/// If any threads are waiting for the lock on this mutex, one of them will
/// be unblocked.
inline void unlock()
{
#if defined(_GTHREADS_WIN32_)
mAlreadyLocked = false;
LeaveCriticalSection(&mHandle);
#else
pthread_mutex_unlock(&mHandle);
#endif
}
_GTHREADS_DISABLE_ASSIGNMENT(GMutex)
private:
#if defined(_GTHREADS_WIN32_)
CRITICAL_SECTION mHandle;
bool mAlreadyLocked;
#else
pthread_mutex_t mHandle;
#endif
friend class GConditionVar;
};
/// Recursive mutex class.
/// This is a mutual exclusion object for synchronizing access to shared
/// memory areas for several threads. The mutex is recursive (i.e. a thread
/// may lock the mutex several times, as long as it unlocks the mutex the same
/// number of times).
/// @see mutex
class GMutexRecursive {
public:
/// Constructor.
GMutexRecursive()
{
#if defined(_GTHREADS_WIN32_)
InitializeCriticalSection(&mHandle);
#else
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&mHandle, &attr);
#endif
}
/// Destructor.
~GMutexRecursive()
{
#if defined(_GTHREADS_WIN32_)
DeleteCriticalSection(&mHandle);
#else
pthread_mutex_destroy(&mHandle);
#endif
}
/// Lock the mutex.
/// The method will block the calling thread until a lock on the mutex can
/// be obtained. The mutex remains locked until \c unlock() is called.
/// @see lock_guard
inline void lock()
{
#if defined(_GTHREADS_WIN32_)
EnterCriticalSection(&mHandle);
#else
pthread_mutex_lock(&mHandle);
#endif
}
/// Try to lock the mutex.
/// The method will try to lock the mutex. If it fails, the function will
/// return immediately (non-blocking).
/// @return \c true if the lock was acquired, or \c false if the lock could
/// not be acquired.
inline bool try_lock()
{
#if defined(_GTHREADS_WIN32_)
return TryEnterCriticalSection(&mHandle) ? true : false;
#else
return (pthread_mutex_trylock(&mHandle) == 0) ? true : false;
#endif
}
/// Unlock the mutex.
/// If any threads are waiting for the lock on this mutex, one of them will
/// be unblocked.
inline void unlock()
{
#if defined(_GTHREADS_WIN32_)
LeaveCriticalSection(&mHandle);
#else
pthread_mutex_unlock(&mHandle);
#endif
}
_GTHREADS_DISABLE_ASSIGNMENT(GMutexRecursive)
private:
#if defined(_GTHREADS_WIN32_)
CRITICAL_SECTION mHandle;
#else
pthread_mutex_t mHandle;
#endif
friend class GConditionVar;
};
/// Fast mutex class.
/// This is a mutual exclusion object for synchronizing access to shared
/// memory areas for several threads. It is similar to the tthread::mutex class,
/// but instead of using system level functions, it is implemented as an atomic
/// spin lock with very low CPU overhead.
///
/// The \c fast_mutex class is NOT compatible with the \c condition_variable
/// class (however, it IS compatible with the \c lock_guard class). It should
/// also be noted that the \c fast_mutex class typically does not provide
/// as accurate thread scheduling as a the standard \c mutex class does.
///
/// Because of the limitations of the class, it should only be used in
/// situations where the mutex needs to be locked/unlocked very frequently.
///
/// @note The "fast" version of this class relies on inline assembler language,
/// which is currently only supported for 32/64-bit Intel x86/AMD64 and
/// PowerPC architectures on a limited number of compilers (GNU g++ and MS
/// Visual C++).
/// For other architectures/compilers, system functions are used instead.
class GFastMutex {
public:
/// Constructor.
#if defined(_GFASTMUTEX_ASM_)
GFastMutex() : mLock(0) {}
#else
GFastMutex()
{
#if defined(_GTHREADS_WIN32_)
InitializeCriticalSection(&mHandle);
#elif defined(_GTHREADS_POSIX_)
pthread_mutex_init(&mHandle, NULL);
#endif
}
#endif
#if !defined(_GFASTMUTEX_ASM_)
/// Destructor.
~GFastMutex()
{
#if defined(_GTHREADS_WIN32_)
DeleteCriticalSection(&mHandle);
#elif defined(_GTHREADS_POSIX_)
pthread_mutex_destroy(&mHandle);
#endif
}
#endif
/// Lock the mutex.
/// The method will block the calling thread until a lock on the mutex can
/// be obtained. The mutex remains locked until \c unlock() is called.
/// @see lock_guard
inline void lock()
{
#if defined(_GFASTMUTEX_ASM_)
bool gotLock;
do {
gotLock = try_lock();
if(!gotLock)
{
#if defined(_GTHREADS_WIN32_)
Sleep(0);
#elif defined(_GTHREADS_POSIX_)
sched_yield();
#endif
}
} while(!gotLock);
#else
#if defined(_GTHREADS_WIN32_)
EnterCriticalSection(&mHandle);
#elif defined(_GTHREADS_POSIX_)
pthread_mutex_lock(&mHandle);
#endif
#endif
}
/// Try to lock the mutex.
/// The method will try to lock the mutex. If it fails, the function will
/// return immediately (non-blocking).
/// @return \c true if the lock was acquired, or \c false if the lock could
/// not be acquired.
inline bool try_lock()
{
#if defined(_GFASTMUTEX_ASM_)
int oldLock;
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
asm volatile (
"movl $1,%%eax\n\t"
"xchg %%eax,%0\n\t"
"movl %%eax,%1\n\t"
: "=m" (mLock), "=m" (oldLock)
:
: "%eax", "memory"
);
#elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
int *ptrLock = &mLock;
__asm {
mov eax,1
mov ecx,ptrLock
xchg eax,[ecx]
mov oldLock,eax
}
#elif defined(__GNUC__) && (defined(__ppc__))
int newLock = 1;
asm volatile (
"\n1:\n\t"
"lwarx %0,0,%1\n\t"
"cmpwi 0,%0,0\n\t"
"bne- 2f\n\t"
"stwcx. %2,0,%1\n\t"
"bne- 1b\n\t"
"isync\n"
"2:\n\t"
: "=&r" (oldLock)
: "r" (&mLock), "r" (newLock)
: "cr0", "memory"
);
#endif
return (oldLock == 0);
#else
#if defined(_GTHREADS_WIN32_)
return TryEnterCriticalSection(&mHandle) ? true : false;
#elif defined(_GTHREADS_POSIX_)
return (pthread_mutex_trylock(&mHandle) == 0) ? true : false;
#endif
#endif
}
/// Unlock the mutex.
/// If any threads are waiting for the lock on this mutex, one of them will
/// be unblocked.
inline void unlock()
{
#if defined(_GFASTMUTEX_ASM_)
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
asm volatile (
"movl $0,%%eax\n\t"
"xchg %%eax,%0\n\t"
: "=m" (mLock)
:
: "%eax", "memory"
);
#elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
int *ptrLock = &mLock;
__asm {
mov eax,0
mov ecx,ptrLock
xchg eax,[ecx]
}
#elif defined(__GNUC__) && (defined(__ppc__))
asm volatile (
"sync\n\t" // Replace with lwsync where possible?
: : : "memory"
);
mLock = 0;
#endif
#else
#if defined(_GTHREADS_WIN32_)
LeaveCriticalSection(&mHandle);
#elif defined(_GTHREADS_POSIX_)
pthread_mutex_unlock(&mHandle);
#endif
#endif
}
private:
#if defined(_GFASTMUTEX_ASM_)
int mLock;
#else
#if defined(_GTHREADS_WIN32_)
CRITICAL_SECTION mHandle;
#elif defined(_GTHREADS_POSIX_)
pthread_mutex_t mHandle;
#endif
#endif
};
/// Lock guard class.
/// The constructor locks the mutex, and the destructor unlocks the mutex, so
/// the mutex will automatically be unlocked when the lock guard goes out of
/// scope. Example usage:
/// @code
/// mutex m;
/// int counter;
///
/// void increment()
/// {
/// lock_guard<mutex> guard(m);
/// ++ counter;
/// }
/// @endcode
template <class T>
class GLockGuard {
public:
typedef T mutex_type;
GLockGuard() : mMutex(0) {}
/// The constructor locks the mutex.
explicit GLockGuard(mutex_type &aMutex)
{
mMutex = &aMutex;
mMutex->lock();
}
/// The destructor unlocks the mutex.
~GLockGuard()
{
if(mMutex)
mMutex->unlock();
}
private:
mutex_type * mMutex;
};
/// Condition variable class.
/// This is a signalling object for synchronizing the execution flow for
/// several threads. Example usage:
/// @code
/// // Shared data and associated mutex and condition variable objects
/// int count;
/// mutex m;
/// condition_variable cond;
///
/// // Wait for the counter to reach a certain number
/// void wait_counter(int targetCount)
/// {
/// lock_guard<mutex> guard(m);
/// while(count < targetCount)
/// cond.wait(m);
/// }
///
/// // Increment the counter, and notify waiting threads
/// void increment()
/// {
/// lock_guard<mutex> guard(m);
/// ++ count;
/// cond.notify_all();
/// }
/// @endcode
class GConditionVar {
public:
/// Constructor.
#if defined(_GTHREADS_WIN32_)
GConditionVar();
#else
GConditionVar()
{
pthread_cond_init(&mHandle, NULL);
}
#endif
/// Destructor.
#if defined(_GTHREADS_WIN32_)
~GConditionVar();
#else
~GConditionVar()
{
pthread_cond_destroy(&mHandle);
}
#endif
/// Wait for the condition.
/// The function will block the calling thread until the condition variable
/// is woken by \c notify_one(), \c notify_all() or a spurious wake up.
/// @param[in] aMutex A mutex that will be unlocked when the wait operation
/// starts, an locked again as soon as the wait operation is finished.
template <class _mutexT>
inline void wait(_mutexT &aMutex)
{
#if defined(_GTHREADS_WIN32_)
// Increment number of waiters
EnterCriticalSection(&mWaitersCountLock);
++ mWaitersCount;
LeaveCriticalSection(&mWaitersCountLock);
// Release the mutex while waiting for the condition (will decrease
// the number of waiters when done)...
aMutex.unlock();
_wait();
aMutex.lock();
#else
pthread_cond_wait(&mHandle, &aMutex.mHandle);
#endif
}
/// Notify one thread that is waiting for the condition.
/// If at least one thread is blocked waiting for this condition variable,
/// one will be woken up.
/// @note Only threads that started waiting prior to this call will be
/// woken up.
#if defined(_GTHREADS_WIN32_)
void notify_one();
#else
inline void notify_one()
{
pthread_cond_signal(&mHandle);
}
#endif
/// Notify all threads that are waiting for the condition.
/// All threads that are blocked waiting for this condition variable will
/// be woken up.
/// @note Only threads that started waiting prior to this call will be
/// woken up.
#if defined(_GTHREADS_WIN32_)
void notify_all();
#else
inline void notify_all()
{
pthread_cond_broadcast(&mHandle);
}
#endif
_GTHREADS_DISABLE_ASSIGNMENT(GConditionVar)
private:
#if defined(_GTHREADS_WIN32_)
void _wait();
HANDLE mEvents[2]; ///< Signal and broadcast event HANDLEs.
unsigned int mWaitersCount; ///< Count of the number of waiters.
CRITICAL_SECTION mWaitersCountLock; ///< Serialize access to mWaitersCount.
#else
pthread_cond_t mHandle;
#endif
};
class GThread;
struct GThreadData {
void* udata; //user data
GThread* thread; //current GThread object
GThreadData(void* u=NULL, GThread* t=NULL):udata(u),thread(t) {}
};
/// Thread class.
class GThread {
public:
#if defined(_GTHREADS_WIN32_)
typedef HANDLE native_handle_type;
#else
typedef pthread_t native_handle_type;
#endif
private:
int mId;
size_t stack_size; //available only for pthreads
static int tcounter; //counts live, joinable GThread instances
static int num_created; //counts all joinable GThread instances ever created by current process
native_handle_type mHandle; ///< Thread handle.
mutable GMutex mDataMutex; ///< Serializer for access to the thread private data.
bool mNotAThread; ///< True if this object is not a thread of execution.
#if defined(_GTHREADS_WIN32_)
unsigned int mWin32ThreadID; ///< Unique thread ID (filled out by _beginthreadex).
#endif
public:
/// Default constructor.
/// Construct a thread object without an associated thread of execution
/// (i.e. non-joinable).
GThread(size_t stacksize=0) : mId(0), stack_size(stacksize), mHandle(0), mNotAThread(true)
#if defined(_GTHREADS_WIN32_)
, mWin32ThreadID(0)
#endif
{}
/// Thread starting constructor.
/// Construct a @c thread object with a new thread of execution.
/// @param[in] aFunction A function pointer to a function of type:
/// <tt>void fun(void * arg)</tt>
/// @param[in] aArg Argument to the thread function.
/// @note This constructor is not fully compatible with the standard C++
/// thread class. It is more similar to the pthread_create() (POSIX) and
/// CreateThread() (Windows) functions.
//GThread(void (*aFunction)(void *, GThread*), void * aArg);
GThread(void (*aFunction)(void *), void * aArg=NULL, size_t stacksize=0);
GThread(void (*aFunction)(GThreadData& thread_data), void * aArg, size_t stacksize=0);
void kickStart(void (*aFunction)(GThreadData& thread_data), void * aArg, size_t stacksize=0);
void kickStart(void (*aFunction)(void *), void * aArg=NULL, size_t stacksize=0);
/// Destructor.
/// @note If the thread is joinable upon destruction, \c std::terminate()
/// will be called, which terminates the process. It is always wise to do
/// \c join() before deleting a thread object.
~GThread();
/// Wait for the thread to finish (join execution flows).
void join();
/// Check if the thread is joinable.
/// A thread object is joinable if it has an associated thread of execution.
bool joinable() const;
/// Detach from the thread.
/// After calling @c detach(), the thread object is no longer assicated with
/// a thread of execution (i.e. it is not joinable). The thread continues
/// execution without the calling thread blocking, and when the thread
/// ends execution, any owned resources are released.
void detach();
/// Return the thread ID of a thread object.
int get_id() const; // { return mID; }
size_t getStackSize() { return stack_size; } //only for pthreads
/// Get the native handle for this thread.
/// @note Under Windows, this is a \c HANDLE, and under POSIX systems, this
/// is a \c pthread_t.
inline native_handle_type native_handle()
{
return mHandle;
}
inline void yield() {
#if defined(_GTHREADS_WIN32_)
Sleep(0);
#else
sched_yield();
#endif
}
static int num_running() {
//return number of running (live) threads
static GFastMutex vLock;
GLockGuard<GFastMutex> guard(vLock);
int r=tcounter;
return r;
}
static size_t defaultStackSize() {
pthread_attr_t attr;
size_t stacksize;
pthread_attr_init(&attr);
pthread_attr_getstacksize(&attr, &stacksize);
pthread_attr_destroy(&attr);
return stacksize;
}
static int liveCount() {
//return number of running (live) threads
return num_running();
}
static void wait_all();
/// Determine the number of threads which can possibly execute concurrently.
/// This function is useful for determining the optimal number of threads to
/// use for a task.
/// @return The number of hardware thread contexts in the system.
/// @note If this value is not defined, the function returns zero (0).
static unsigned hardware_concurrency();
_GTHREADS_DISABLE_ASSIGNMENT(GThread)
private:
void initStart(void* tidata, size_t stacksize=0);
static void update_counter(int inc=1, GThread* t_update=NULL); //default: increments
// This is the internal thread wrapper function.
#if defined(_GTHREADS_WIN32_)
static unsigned WINAPI wrapper_function(void * aArg);
#else
static void * wrapper_function(void * aArg);
#endif
};
/// Minimal implementation of the \c ratio class. This class provides enough
/// functionality to implement some basic \c chrono classes.
template <int64_t N, int64_t D = 1> class ratio {
public:
static double _as_double() { return double(N) / double(D); }
};
/// Minimal implementation of the \c chrono namespace.
/// The \c chrono namespace provides types for specifying time intervals.
namespace chrono {
/// Duration template class. This class provides enough functionality to
/// implement \c this_thread::sleep_for().
template <class _Rep, class _Period = ratio<1> > class duration {
private:
_Rep rep_;
public:
typedef _Rep rep;
typedef _Period period;
/// Construct a duration object with the given duration.
template <class _Rep2>
explicit duration(const _Rep2& r) : rep_(r) {};
/// Return the value of the duration object.
rep count() const
{
return rep_;
}
};
// Standard duration types.
typedef duration<int64_t, ratio<1, 1000000000> > nanoseconds; ///< Duration with the unit nanoseconds.
typedef duration<int64_t, ratio<1, 1000000> > microseconds; ///< Duration with the unit microseconds.
typedef duration<int64_t, ratio<1, 1000> > milliseconds; ///< Duration with the unit milliseconds.
typedef duration<int64_t> seconds; ///< Duration with the unit seconds.
typedef duration<int64_t, ratio<60> > minutes; ///< Duration with the unit minutes.
typedef duration<int64_t, ratio<3600> > hours; ///< Duration with the unit hours.
}
/// The namespace \c this_thread provides methods for dealing with the
/// calling thread.
namespace this_thread {
/// Return the thread ID of the calling thread.
//thread::id get_id(); //this can be slow, better not use it
/// Yield execution to another thread.
/// Offers the operating system the opportunity to schedule another thread
/// that is ready to run on the current processor.
inline void yield()
{
#if defined(_GTHREADS_WIN32_)
Sleep(0);
#else
sched_yield();
#endif
}
/// Blocks the calling thread for a period of time.
/// @param[in] aTime Minimum time to put the thread to sleep.
/// Example usage:
/// @code
/// // Sleep for 100 milliseconds
/// this_thread::sleep_for(chrono::milliseconds(100));
/// @endcode
/// @note Supported duration types are: nanoseconds, microseconds,
/// milliseconds, seconds, minutes and hours.
template <class _Rep, class _Period> void sleep_for(const chrono::duration<_Rep, _Period>& aTime)
{
#if defined(_GTHREADS_WIN32_)
Sleep(int(double(aTime.count()) * (1000.0 * _Period::_as_double()) + 0.5));
#else
usleep(int(double(aTime.count()) * (1000000.0 * _Period::_as_double()) + 0.5));
#endif
}
}
// Define/macro cleanup
#undef _GTHREADS_DISABLE_ASSIGNMENT
#endif // _GTHREADS_