Skip to content

BeyondHeaven/uec_code

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Unsupervised Exposure Correction (UEC) Documentation

Prerequisite

Dataset

To access the Afifi's Exposure-errors Dataset, please follow the instructions at this link.

For our Radiometry Correction Dataset, please check this link

Package Installation

Install the necessary Python packages by running the following command:

pip install -r requirements.txt

Pretrained Models

In the "checkpoints" directory, we have made available two ".pth" files, representing the outcomes of training on both Afifi's Exposure-errors Dataset and our Radiometry Correction Dataset, respectively.

Training

Make sure to replace dataset_root with the actual path where you downloaded the dataset.

python train.py  --name exposure --model uec --dataset_mode exposure --load_size 448 --preprocess resize_and_crop --gpu_ids 2  --save_epoch_freq 1 --lr 1e-4 --beta1 0.9 --lr_policy step --lr_decay_iters 6574200 --dataset_root ../data/exposure_dataset/INPUT_IMAGES/

If you are using the Radiometry Correction Dataset, set --dataset_mode to fivek. We removed TVLoss because we found the performance to be better without it. The PSNR result is as following:

EV -2 -1 0 +1 +2 +3
w/ TVLoss 22.577 20.528 18.336 17.820 15.752 15.138
w/o TVLoss 25.343 23.637 20.552 18.391 15.327 13.175

To reproduce the results from the paper, please run:

git reset --hard 9578ef19c250b349d2a247913af8e5e902e7f707

Testing

Replace dataset_root with the actual path for testing:

python test.py  --name exposure-errors --model uec --dataset_mode fivektest --preprocess resize --load_size 256 --gpu_ids 2  --dataset_root ../data//exposure_dataset/test/ --ref_image_paths ../data/exposure_dataset/GT_IMAGES/a0001-jmac_DSC1459.jpg

The option --ref_image_paths is for choosing one reference for the final calibration.

Evaluation

We perform evaluation using PyIQA.

python inference_iqa_filelist.py -f ./results/file.txt -i ./results/exposure/test_latest/images/ -r <path-to-your-reference-images>

file.txt contains the mapping between input images and ground truth, , separated by tabs. If you need to resize the images, run the following command:

python script_name.py --img_size 256 --input_folder ./input_images --output_folder ./output_images

Acknowledgement

We brrow some code from BargainNet, NeurOP and Pix2PixHD. We would like to thanks the authors for sharing their excellent works.

License Agreement

  • This repository with the provided code and pretrained model is available for non-commercial research purposes only.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages