-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
95 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
import numpy as np | ||
import pandas as pd | ||
import sympy as sp | ||
from autora.experiment_runner.synthetic.abstract.equation import equation_experiment | ||
from autora.experimentalist.random import random_pool | ||
from autora.state import StandardState, estimator_on_state, on_state | ||
from autora.theorist.bms import BMSRegressor | ||
from autora.variable import ValueType, Variable, VariableCollection | ||
|
||
#################################################################################### | ||
## Define initial data | ||
#################################################################################### | ||
|
||
#### Define variable data #### | ||
iv = Variable(name="x", value_range=(0, 2 * np.pi), allowed_values=np.linspace(0, 2 * np.pi, 30)) | ||
dv = Variable(name="y", type=ValueType.REAL) | ||
variables = VariableCollection(independent_variables=[iv], dependent_variables=[dv]) | ||
|
||
#### Define seed condition data #### | ||
conditions = random_pool(variables, num_samples=10, random_state=0) | ||
|
||
#################################################################################### | ||
## Define experimentalist | ||
#################################################################################### | ||
|
||
experimentalist = on_state(random_pool, output=["conditions"]) | ||
|
||
#################################################################################### | ||
## Define experiment runner | ||
#################################################################################### | ||
|
||
sin_experiment = equation_experiment( | ||
sp.simplify("sin(x)"), variables.independent_variables, variables.dependent_variables[0] | ||
) | ||
sin_runner = sin_experiment.experiment_runner | ||
|
||
experiment_runner = on_state(sin_runner, output=["experiment_data"]) | ||
|
||
#################################################################################### | ||
## Define theorist | ||
#################################################################################### | ||
|
||
theorist = estimator_on_state(BMSRegressor(epochs=100)) | ||
|
||
#################################################################################### | ||
## Define state | ||
#################################################################################### | ||
|
||
s = StandardState( | ||
variables=variables, conditions=conditions, experiment_data=pd.DataFrame(columns=["x", "y"]) | ||
) | ||
|
||
#################################################################################### | ||
## Cycle through the state | ||
#################################################################################### | ||
|
||
print("Pre-Defined State:") | ||
print(f"Number of datapoints collected: {len(s['experiment_data'])}") | ||
print(f"Derived models: {s['models']}") | ||
print("\n") | ||
|
||
for i in range(5): | ||
s = experimentalist(s, num_samples=10, random_state=42) | ||
s = experiment_runner(s, added_noise=1.0, random_state=42) | ||
s = theorist(s) | ||
print(f"\nCycle {i+1} Results:") | ||
print(f"Number of datapoints collected: {len(s['experiment_data'])}") | ||
print(f"Derived models: {s['models']}") | ||
print("\n") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
{"instruction": "import numpy as np\nimport pandas as pd\nimport sympy as sp\nfrom autora.experiment_runner.synthetic.abstract.equation import equation_experiment\nfrom autora.experimentalist.random import random_pool\nfrom autora.state import StandardState, estimator_on_state, on_state\nfrom autora.theorist.bms import BMSRegressor\nfrom autora.variable import ValueType, Variable, VariableCollection\n\n####################################################################################\n## Define initial data\n####################################################################################\n\n#### Define variable data ####\niv = Variable(name=\"x\", value_range=(0, 2 * np.pi), allowed_values=np.linspace(0, 2 * np.pi, 30))\ndv = Variable(name=\"y\", type=ValueType.REAL)\nvariables = VariableCollection(independent_variables=[iv], dependent_variables=[dv])\n\n#### Define seed condition data ####\nconditions = random_pool(variables, num_samples=10, random_state=0)\n\n####################################################################################\n## Define experimentalist\n####################################################################################\n\nexperimentalist = on_state(random_pool, output=[\"conditions\"])\n\n####################################################################################\n## Define experiment runner\n####################################################################################\n\nsin_experiment = equation_experiment(\n sp.simplify(\"sin(x)\"), variables.independent_variables, variables.dependent_variables[0]\n)\nsin_runner = sin_experiment.experiment_runner\n\nexperiment_runner = on_state(sin_runner, output=[\"experiment_data\"])\n\n####################################################################################\n## Define theorist\n####################################################################################\n\ntheorist = estimator_on_state(BMSRegressor(epochs=100))\n\n####################################################################################\n## Define state\n####################################################################################\n\ns = StandardState(\n variables=variables, conditions=conditions, experiment_data=pd.DataFrame(columns=[\"x\", \"y\"])\n)\n\n####################################################################################\n## Cycle through the state\n####################################################################################\n\nprint(\"Pre-Defined State:\")\nprint(f\"Number of datapoints collected: {len(s['experiment_data'])}\")\nprint(f\"Derived models: {s['models']}\")\nprint(\"\\n\")\n\nfor i in range(5):\n s = experimentalist(s, num_samples=10, random_state=42)\n s = experiment_runner(s, added_noise=1.0, random_state=42)\n s = theorist(s)\n print(f\"\\nCycle {i+1} Results:\")\n print(f\"Number of datapoints collected: {len(s['experiment_data'])}\")\n print(f\"Derived models: {s['models']}\")\n print(\"\\n\")\n", "output": "The following example demonstrates how to use AutoRA to automate the process of model discovery, experimental design, and data collection. \n\nThe discovery problem is defined by a single independent variable $x \\in [0, 2 \\pi]$ and dependent variable $y$.\nThe experiment amounts to a simple sine wave, $y = \\sin(x)$, which is the model we are trying to discover.\n\nThe discovery cycle iterates between the experimentalist, experiment runner, and theorist. Here, we us a \"random\" experimentalist, which samples novel experimental conditions for $x$ every cycle. \nThe experiment runner then collects data for the corresponding $y$ values. Finally, the theorist uses a [Bayesian Machine Scientist](https://autoresearch.github.io/autora/user-guide/theorists/bms/) (BMS; Guimerà et al., in Science Advances) to identify a scientific model that explains the data. "} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
The following example demonstrates how to use AutoRA to automate the process of model discovery, experimental design, and data collection. | ||
|
||
The discovery problem is defined by a single independent variable $x \in [0, 2 \pi]$ and dependent variable $y$. | ||
The experiment amounts to a simple sine wave, $y = \sin(x)$, which is the model we are trying to discover. | ||
|
||
The discovery cycle iterates between the experimentalist, experiment runner, and theorist. Here, we us a "random" experimentalist, which samples novel experimental conditions for $x$ every cycle. | ||
The experiment runner then collects data for the corresponding $y$ values. Finally, the theorist uses a [Bayesian Machine Scientist](https://autoresearch.github.io/autora/user-guide/theorists/bms/) (BMS; Guimerà et al., in Science Advances) to identify a scientific model that explains the data. |
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters