Skip to content

Commit

Permalink
Merge pull request #10 from AutoResearch/carlosg/genargs
Browse files Browse the repository at this point in the history
feat: Add arguments for model parameters
  • Loading branch information
carlosgjs authored Dec 12, 2023
2 parents 1d80dfe + 5231456 commit 45bd148
Show file tree
Hide file tree
Showing 8 changed files with 273 additions and 34 deletions.
6 changes: 4 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,13 +1,15 @@
# AutoDoc

[![ssec](https://img.shields.io/badge/SSEC-Project-purple?logo=&style=plastic)](https://escience.washington.edu/software-engineering/ssec/)

[![Template](https://img.shields.io/badge/Template-LINCC%20Frameworks%20Python%20Project%20Template-brightgreen)](https://lincc-ppt.readthedocs.io/en/latest/)

[![PyPI](https://img.shields.io/pypi/v/autora-doc?color=blue&logo=pypi&logoColor=white)](https://pypi.org/project/autora-doc/)
<!-- [![PyPI](https://img.shields.io/pypi/v/autora-doc?color=blue&logo=pypi&logoColor=white)](https://pypi.org/project/autora-doc/) -->


[![GitHub Workflow Status](https://github.com/autoresearch/autodoc/actions/workflows/smoke-test.yml/badge.svg)](https://github.com/AutoResearch/autodoc/actions/workflows/smoke-test.yml)
[![codecov](https://codecov.io/gh/AutoResearch/autodoc/branch/main/graph/badge.svg)](https://codecov.io/gh/AutoResearch/autodoc)
[![Read the Docs](https://img.shields.io/readthedocs/autora-doc)](https://autora-doc.readthedocs.io/)
<!-- [![Read the Docs](https://img.shields.io/readthedocs/autora-doc)](https://autora-doc.readthedocs.io/) -->

This project was automatically generated using the LINCC-Frameworks
[python-project-template](https://github.com/lincc-frameworks/python-project-template). For more information about the project template see the
Expand Down
18 changes: 13 additions & 5 deletions azureml/eval.yml
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,12 @@ $schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json
command: >
python -m autora.doc.pipelines.main eval
${{inputs.data_dir}}/data.jsonl
${{inputs.model_dir}}/llama-2-7b-chat-hf
SYS_1
INSTR_SWEETP_1
--model-path ${{inputs.model_dir}}/llama-2-7b-chat-hf
--sys-id ${{inputs.sys_id}}
--instruc-id ${{inputs.instruc_id}}
--param temperature=${{inputs.temperature}}
--param top_k=${{inputs.top_k}}
--param top_p=${{inputs.top_p}}
code: ../src
inputs:
data_dir:
Expand All @@ -13,6 +16,11 @@ inputs:
model_dir:
type: uri_folder
path: azureml://datastores/workspaceblobstore/paths/base_models
temperature: 0.7
top_p: 0.95
top_k: 40
sys_id: SYS_1
instruc_id: INSTR_SWEETP_1
# using a curated environment doesn't work because we need additional packages
environment: # azureml://registries/azureml/environments/acpt-pytorch-2.0-cuda11.7/versions/21
image: mcr.microsoft.com/azureml/curated/acpt-pytorch-2.0-cuda11.7:21
Expand All @@ -25,6 +33,6 @@ environment: # azureml://registries/azureml/environments/acpt-pytorch-2.0-cuda11
# image: nvcr.io/nvidia/pytorch:23.10-py3
conda_file: conda.yml
display_name: autodoc_prediction
compute: azureml:v100cluster
experiment_name: autodoc_prediction
compute: azureml:t4cluster
experiment_name: evaluation
description: |
14 changes: 12 additions & 2 deletions azureml/generate.yml
Original file line number Diff line number Diff line change
Expand Up @@ -3,16 +3,26 @@ command: >
python -m autora.doc.pipelines.main generate
--model-path ${{inputs.model_dir}}/llama-2-7b-chat-hf
--output ./outputs/output.txt
--sys-id ${{inputs.sys_id}}
--instruc-id ${{inputs.instruc_id}}
--param temperature=${{inputs.temperature}}
--param top_k=${{inputs.top_k}}
--param top_p=${{inputs.top_p}}
autora/doc/pipelines/main.py
code: ../src
inputs:
model_dir:
type: uri_folder
path: azureml://datastores/workspaceblobstore/paths/base_models
temperature: 0.7
top_p: 0.95
top_k: 40
sys_id: SYS_1
instruc_id: INSTR_SWEETP_1
environment:
image: mcr.microsoft.com/azureml/curated/acpt-pytorch-2.0-cuda11.7:21
conda_file: conda.yml
display_name: autodoc_prediction
compute: azureml:v100cluster
experiment_name: autodoc_prediction
compute: azureml:t4cluster
experiment_name: prediction
description: |
126 changes: 126 additions & 0 deletions notebooks/generate.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2\n",
"from autora.doc.runtime.predict_hf import Predictor\n",
"from autora.doc.runtime.prompts import INSTR, SYS, InstructionPrompts, SystemPrompts"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# model = \"../../models\" # if model has been previously downloaded via huggingface-cli\n",
"model = \"meta-llama/Llama-2-7b-chat-hf\"\n",
"pred = Predictor(model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"TEST_CODE = \"\"\"\n",
"from sweetpea import *\n",
"from sweetpea.primitives import *\n",
"\n",
"number_list = [125, 132, 139, 146, 160, 167, 174, 181]\n",
"letter_list = ['b', 'd', 'f', 'h', 's', 'u', 'w', 'y']\n",
"\n",
"number = Factor(\"number\", number_list)\n",
"letter = Factor(\"letter\", letter_list)\n",
"task = Factor(\"task\", [\"number task\", \"letter task\", \"free choice task\"])\n",
"\n",
"\n",
"def is_forced_trial_switch(task):\n",
" return (task[-1] == \"number task\" and task[0] == \"letter task\") or \\\n",
" (task[-1] == \"letter task\" and task[0] == \"number task\")\n",
"\n",
"\n",
"def is_forced_trial_repeat(task):\n",
" return (task[-1] == \"number task\" and task[0] == \"number task\") or \\\n",
" (task[-1] == \"letter task\" and task[0] == \"letter task\")\n",
"\n",
"\n",
"def is_free_trial_transition(task):\n",
" return task[-1] != \"free choice task\" and task[0] == \"free choice task\"\n",
"\n",
"\n",
"def is_free_trial_repeat(task):\n",
" return task[-1] == \"free choice task\" and task[0] == \"free choice task\"\n",
"\n",
"\n",
"def is_not_relevant_transition(task):\n",
" return not (is_forced_trial_repeat(task) or is_forced_trial_switch(task) or is_free_trial_repeat(\n",
" task) or is_free_trial_transition(task))\n",
"\n",
"\n",
"transit = Factor(\"task transition\", [\n",
" DerivedLevel(\"forced switch\", transition(is_forced_trial_switch, [task]), 3),\n",
" DerivedLevel(\"forced repeat\", transition(is_forced_trial_repeat, [task])),\n",
" DerivedLevel(\"free transition\", transition(is_free_trial_transition, [task]), 4),\n",
" DerivedLevel(\"free repeat\", transition(is_free_trial_repeat, [task]), 4),\n",
" DerivedLevel(\"forced first\", transition(is_not_relevant_transition, [task]), 4)\n",
"])\n",
"design = [letter, number, task, transit]\n",
"crossing = [[letter], [number], [transit]]\n",
"constraints = [MinimumTrials(256)]\n",
"\n",
"block = MultiCrossBlock(design, crossing, constraints)\n",
"\n",
"experiment = synthesize_trials(block, 1)\n",
"\n",
"save_experiments_csv(block, experiment, 'code_1_sequences/seq')\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output = pred.predict(\n",
" SYS[SystemPrompts.SYS_1],\n",
" INSTR[InstructionPrompts.INSTR_SWEETP_EXAMPLE],\n",
" [TEST_CODE],\n",
" temperature=0.05,\n",
" top_k=10,\n",
" num_ret_seq=3,\n",
")[0]\n",
"for i, o in enumerate(output):\n",
" print(f\"******** Output {i} ********\\n{o}*************\\n\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "autodoc",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.18"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
50 changes: 38 additions & 12 deletions src/autora/doc/pipelines/main.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import itertools
import logging
from timeit import default_timer as timer
from typing import List
Expand All @@ -16,13 +17,24 @@
logger = logging.getLogger(__name__)


@app.command()
def eval(data_file: str, model_path: str, sys_id: SystemPrompts, instruc_id: InstructionPrompts) -> List[str]:
@app.command(help="Evaluate model on a data file")
def eval(
data_file: str = typer.Argument(..., help="JSONL Data file to evaluate on"),
model_path: str = typer.Option("meta-llama/Llama-2-7b-chat-hf", help="Path to HF model"),
sys_id: SystemPrompts = typer.Option(SystemPrompts.SYS_1, help="System prompt ID"),
instruc_id: InstructionPrompts = typer.Option(
InstructionPrompts.INSTR_SWEETP_1, help="Instruction prompt ID"
),
param: List[str] = typer.Option(
[], help="Additional float parameters to pass to the model as name=float pairs"
),
) -> List[List[str]]:
import jsonlines
import mlflow

mlflow.autolog()

param_dict = {pair[0]: float(pair[1]) for pair in [pair.split("=") for pair in param]}
run = mlflow.active_run()

sys_prompt = SYS[sys_id]
Expand All @@ -33,6 +45,7 @@ def eval(data_file: str, model_path: str, sys_id: SystemPrompts, instruc_id: Ins
logger.info(f"Active run_id: {run.info.run_id}")
logger.info(f"running predict with {data_file}")
logger.info(f"model path: {model_path}")
mlflow.log_params(param_dict)

with jsonlines.open(data_file) as reader:
items = [item for item in reader]
Expand All @@ -41,16 +54,19 @@ def eval(data_file: str, model_path: str, sys_id: SystemPrompts, instruc_id: Ins

pred = Predictor(model_path)
timer_start = timer()
predictions = pred.predict(sys_prompt, instr_prompt, inputs)
predictions = pred.predict(sys_prompt, instr_prompt, inputs, **param_dict)
timer_end = timer()
pred_time = timer_end - timer_start
mlflow.log_metric("prediction_time/doc", pred_time / (len(inputs)))
for i in range(len(inputs)):
mlflow.log_text(labels[i], f"label_{i}.txt")
mlflow.log_text(inputs[i], f"input_{i}.py")
mlflow.log_text(predictions[i], f"prediction_{i}.txt")
for j in range(len(predictions[i])):
mlflow.log_text(predictions[i][j], f"prediction_{i}_{j}.txt")

tokens = pred.tokenize(predictions)["input_ids"]
# flatten predictions for counting tokens
predictions_flat = list(itertools.chain.from_iterable(predictions))
tokens = pred.tokenize(predictions_flat)["input_ids"]
total_tokens = sum([len(token) for token in tokens])
mlflow.log_metric("total_tokens", total_tokens)
mlflow.log_metric("tokens/sec", total_tokens / pred_time)
Expand All @@ -59,18 +75,28 @@ def eval(data_file: str, model_path: str, sys_id: SystemPrompts, instruc_id: Ins

@app.command()
def generate(
python_file: str,
model_path: str = "meta-llama/llama-2-7b-chat-hf",
output: str = "output.txt",
sys_id: SystemPrompts = SystemPrompts.SYS_1,
instruc_id: InstructionPrompts = InstructionPrompts.INSTR_SWEETP_1,
python_file: str = typer.Argument(..., help="Python file to generate documentation for"),
model_path: str = typer.Option("meta-llama/Llama-2-7b-chat-hf", help="Path to HF model"),
output: str = typer.Option("output.txt", help="Output file"),
sys_id: SystemPrompts = typer.Option(SystemPrompts.SYS_1, help="System prompt ID"),
instruc_id: InstructionPrompts = typer.Option(
InstructionPrompts.INSTR_SWEETP_1, help="Instruction prompt ID"
),
param: List[str] = typer.Option(
[], help="Additional float parameters to pass to the model as name=float pairs"
),
) -> None:
param_dict = {pair[0]: float(pair[1]) for pair in [pair.split("=") for pair in param]}
"""
Generate documentation from python file
"""
with open(python_file, "r") as f:
inputs = [f.read()]
input = f.read()
sys_prompt = SYS[sys_id]
instr_prompt = INSTR[instruc_id]
pred = Predictor(model_path)
predictions = pred.predict(sys_prompt, instr_prompt, inputs)
# grab first result since we only passed one input
predictions = pred.predict(sys_prompt, instr_prompt, [input], **param_dict)[0]
assert len(predictions) == 1, f"Expected only one output, got {len(predictions)}"
logger.info(f"Writing output to {output}")
with open(output, "w") as f:
Expand Down
32 changes: 23 additions & 9 deletions src/autora/doc/runtime/predict_hf.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,22 +27,36 @@ def __init__(self, model_path: str):
tokenizer=self.tokenizer,
)

def predict(self, sys: str, instr: str, inputs: List[str]) -> List[str]:
logger.info(f"Generating {len(inputs)} predictions")
def predict(
self,
sys: str,
instr: str,
inputs: List[str],
temperature: float = 0.6,
top_p: float = 0.95,
top_k: float = 40,
max_length: float = 2048,
num_ret_seq: float = 1,
) -> List[List[str]]:
logger.info(
f"Generating {len(inputs)} predictions. Temperature: {temperature}, top_p: {top_p}, top_k: {top_k}, "
f"max_length: {max_length}"
)
prompts = [TEMP_LLAMA2.format(sys=sys, instr=instr, input=input) for input in inputs]
# TODO: Make these parameters configurable
sequences = self.pipeline(
prompts,
do_sample=True,
temperature=0.6,
top_p=0.95,
top_k=40,
num_return_sequences=1,
temperature=temperature,
top_p=top_p,
top_k=int(top_k),
num_return_sequences=int(num_ret_seq),
eos_token_id=self.tokenizer.eos_token_id,
max_length=2048,
max_length=int(max_length),
)

results = [Predictor.trim_prompt(sequence[0]["generated_text"]) for sequence in sequences]
results = [
[Predictor.trim_prompt(seq["generated_text"]) for seq in sequence] for sequence in sequences
]
logger.info(f"Generated {len(results)} results")
return results

Expand Down
Loading

0 comments on commit 45bd148

Please sign in to comment.