Skip to content

Commit

Permalink
New: Vibrational analysis works for diatomics as well
Browse files Browse the repository at this point in the history
Also, defines rotational modes to match the current frame of the molecule,
rather than the Eckart frame. If all 3 rotations are being projected out, this
isn't an issue, but if we ant to choose only 2, the frames need to match.
  • Loading branch information
avcopan committed Aug 30, 2024
1 parent a33159d commit f118b3b
Show file tree
Hide file tree
Showing 2 changed files with 50 additions and 24 deletions.
52 changes: 28 additions & 24 deletions automol/geom/base/_0core.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,7 @@ def string(geo, angstrom: bool = True, mode: Optional[ArrayLike] = None):

# If requested, include the mode in the string
if mode is not None:
assert len(lines) == natms, f"Invalid mode for geometry:\n{mode}\n{geo}"
mode = numpy.reshape(mode, (natms, 3))
mode_strs = [f"{m[0]:10.6f} {m[1]:10.6f} {m[2]:10.6f}" for m in mode]
lines = [" ".join([s, x]) for s, x in zip(lines, mode_strs)]

Expand Down Expand Up @@ -607,7 +607,7 @@ def inertia_tensor(geo, amu=True):
return ine


def moments_of_inertia(geo, amu=True):
def moments_of_inertia(geo, amu: bool = True, drop_null: bool = False):
"""Calculate the moments of inertia along the xyz axes
(these not sorted in to A,B,C).
Expand All @@ -617,21 +617,19 @@ def moments_of_inertia(geo, amu=True):
:type amu: bool
:rtype: tuple(tuple(float))
"""
moms, *_ = rotational_analysis(geo, amu=amu)
moms, _ = rotational_analysis(geo, amu=amu, drop_null=drop_null)
return moms


def principal_axes(geo):
def principal_axes(geo, drop_null: bool = False):
"""Determine the principal axes of rotation for a molecular geometry.
:param geo: molecular geometry
:type geo: automol geometry data structure
:param amu: parameter to control electron mass -> amu conversion
:type amu: bool
:rtype: tuple(tuple(float))
"""
_, paxs, *_ = rotational_analysis(geo)
return paxs
_, rot_axes = rotational_analysis(geo, drop_null=drop_null)
return rot_axes


def aligned_to_principal_axes(geo):
Expand All @@ -641,28 +639,27 @@ def aligned_to_principal_axes(geo):
:param geo: The geometry
:return: The geometry with standard orientation
"""
*_, geo_aligned = rotational_analysis(geo)
return geo_aligned
return transform_by_matrix(mass_centered(geo), principal_axes(geo), trans=False)


def rotational_analysis(
geo, amu: bool = True
) -> tuple[tuple[float, ...], numpy.ndarray, Any]:
geo, drop_null: bool = False, amu: bool = True
) -> tuple[tuple[float, ...], numpy.ndarray]:
"""Do a rotational analysis, generating the moments of inertia and principal axes.
:param geo: A molecular geometry
:param drop_null: Drop null rotations from the analysis? (1 if linear, 3 if atom)
:param amu: Use atomic mass units instead of electron mass unit?, defaults to True
:return: The eigenvalues and eigenvetors of the inertia tensor, along with a
geometry aligned to the principal axes
:return: The eigenvalues and eigenvetors of the inertia tensor
"""
ine = inertia_tensor(geo, amu=amu)
eig_vals, eig_vecs = numpy.linalg.eigh(ine)
# Sort the eigenvectors and values
idxs = numpy.argsort(eig_vals)
eig_vals = tuple(eig_vals[idxs])
eig_vecs = eig_vecs[:, idxs]
geo_aligned = transform_by_matrix(mass_centered(geo), eig_vecs, trans=False)
return eig_vals, eig_vecs, geo_aligned
eig_vals = tuple(eig_vals)
# Drop null rotations, if requested
ndrop = 0 if not drop_null else 3 if is_atom(geo) else 1 if is_linear(geo) else 0
assert numpy.allclose(eig_vals[:ndrop], 0.0), f"ndrop={ndrop} eig_vals={eig_vals}"
return eig_vals[ndrop:], eig_vecs[:, ndrop:]


def translational_normal_modes(geo, mass_weight: bool = True) -> numpy.ndarray:
Expand All @@ -682,13 +679,20 @@ def translational_normal_modes(geo, mass_weight: bool = True) -> numpy.ndarray:
def rotational_normal_modes(geo, mass_weight: bool = True) -> numpy.ndarray:
"""Calculate the rotational normal modes.
For each atom, the direction of rotation around a given axis is given as the cross
product of its position with the axis.
:param geo: The geometry
:param mass_weight: Return mass-weighted normal modes?
:return: The rotational normal modes, as a 3N x (3 or 2) matrix
"""
_, rot_axes, geo_aligned = rotational_analysis(geo)
xyzs = coordinates(geo_aligned)
rot_coos = numpy.vstack([numpy.cross(xyz, rot_axes) for xyz in xyzs])
_, rot_axes = rotational_analysis(geo, drop_null=True)
xyzs = coordinates(mass_centered(geo))
rot_coos = []
for rot_axis in rot_axes.T:
rot_coo = numpy.concatenate([numpy.cross(xyz, rot_axis) for xyz in xyzs])
rot_coos.append(rot_coo)
rot_coos = numpy.transpose(rot_coos)
if mass_weight:
rot_coos *= mass_weight_vector(geo)[:, numpy.newaxis]
return rot_coos
Expand Down Expand Up @@ -725,7 +729,7 @@ def projection_onto_internal_modes(geo) -> numpy.ndarray:
return int_proj


def rotational_constants(geo, amu=True):
def rotational_constants(geo, amu=True, drop_null: bool = False):
"""Calculate the rotational constants.
(these not sorted in to A,B,C).
Expand All @@ -735,7 +739,7 @@ def rotational_constants(geo, amu=True):
:type amu: bool
:rtype: tuple(float)
"""
moms = moments_of_inertia(geo, amu=amu)
moms = moments_of_inertia(geo, amu=amu, drop_null=drop_null)
cons = numpy.divide(1.0, moms) / 4.0 / numpy.pi / phycon.SOL
cons = tuple(cons)
return cons
Expand Down
22 changes: 22 additions & 0 deletions automol/tests/test_geom.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
"""

# import pytest
import io
from pathlib import Path

import numpy
Expand Down Expand Up @@ -785,10 +786,31 @@ def test__repulsion_energy():

def test__vibrational_analysis(data_directory_path):
"""Test automol.geom.vibrational_analysis."""
# Linear diatomic
geo = (("O", (0.0, 0.0, 0.204769)), ("H", (0.0, 0.0, -1.638153)))
hess_io = io.StringIO(
"""
-0.00008 0. 0. 0.00008 0. 0.
0. 0.000021 0. 0. -0.000021 0.
0. 0. 0.511701 0. 0. -0.511701
0.00008 0. 0. -0.00008 0. 0.
0. -0.000021 0. 0. 0.000021 0.
0. 0. -0.511701 0. 0. 0.511701
"""
)
hess = numpy.loadtxt(hess_io)
ref_freqs = (3776.5,)
freqs, _ = geom.vibrational_analysis(geo, hess)
print(freqs)
assert len(freqs) == len(ref_freqs), f"{freqs} != {ref_freqs}"
assert numpy.allclose(freqs, ref_freqs, atol=1e-1), f"{freqs} != {ref_freqs}"

# Non-linear polyatomic (TS)
geo = geom.from_xyz_string((data_directory_path / "c4h7_h2_geom.xyz").read_text())
hess = numpy.loadtxt(data_directory_path / "c4h7_h2_hess.txt")
ref_freqs = numpy.loadtxt(data_directory_path / "c4h7_h2_freqs.txt")
freqs, _ = geom.vibrational_analysis(geo, hess)
print(freqs)
assert numpy.allclose(freqs, ref_freqs, atol=1e-1), f"{freqs} !=\n{ref_freqs}"


Expand Down

0 comments on commit f118b3b

Please sign in to comment.