-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
!5852 [自研][推理引擎 AscendIE]CenterNet模型适配Torch-AIE #2
* [CenterNet] 适配用例 #2
- Loading branch information
陈楚未
authored and
杨博
committed
Dec 1, 2023
1 parent
cbf5e3e
commit 2a73f52
Showing
2 changed files
with
871 additions
and
0 deletions.
There are no files selected for viewing
360 changes: 360 additions & 0 deletions
360
AscendIE/TorchAIE/built-in/cv/detection/CenterNet/dcn_v2.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,360 @@ | ||
# Copyright 2023 Huawei Technologies Co., Ltd | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import absolute_import, division, print_function | ||
import math | ||
|
||
import torch | ||
import torchvision | ||
from torch import nn | ||
from torch.autograd import Function | ||
from torch.autograd.function import once_differentiable | ||
from torch.nn.modules.utils import _pair | ||
|
||
class DCNv2Module(torch.nn.Module): | ||
''' Modified DCNv2Module class for replacing formerly C++ implemented DCNv2 Operator with torchvision.ops.deform_conv2d ''' | ||
def __init__(self): | ||
super(DCNv2Module, self).__init__() | ||
|
||
def forward(self, input, weight, offset, bias, stride, padding, dilation, deformable_groups, mask): | ||
print("[INFO] Modified DCNv2Module forward") | ||
|
||
output = torchvision.ops.deform_conv2d( | ||
input = input, | ||
offset = offset, | ||
weight = weight, | ||
bias = bias, | ||
stride = stride, | ||
padding = padding, | ||
dilation = dilation, | ||
mask = mask, | ||
) | ||
|
||
return output | ||
|
||
def dcn_v2_conv( | ||
input, weight, offset, bias, stride, padding, dilation, deformable_groups, mask | ||
): | ||
dcn_v2_module = DCNv2Module() | ||
return dcn_v2_module(input, weight, offset, bias, stride, padding, dilation, deformable_groups, mask) | ||
|
||
class DCNv2(nn.Module): | ||
def __init__( | ||
self, | ||
in_channels, | ||
out_channels, | ||
kernel_size, | ||
stride, | ||
padding, | ||
dilation=1, | ||
deformable_groups=1, | ||
): | ||
super(DCNv2, self).__init__() | ||
self.in_channels = in_channels | ||
self.out_channels = out_channels | ||
self.kernel_size = _pair(kernel_size) | ||
self.stride = _pair(stride) | ||
self.padding = _pair(padding) | ||
self.dilation = _pair(dilation) | ||
self.deformable_groups = deformable_groups | ||
|
||
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels, *self.kernel_size)) | ||
self.bias = nn.Parameter(torch.Tensor(out_channels)) | ||
self.reset_parameters() | ||
|
||
def reset_parameters(self): | ||
n = self.in_channels | ||
for k in self.kernel_size: | ||
n *= k | ||
stdv = 1.0 / math.sqrt(n) | ||
self.weight.data.uniform_(-stdv, stdv) | ||
self.bias.data.zero_() | ||
|
||
def forward(self, input, offset, mask): | ||
assert ( | ||
2 * self.deformable_groups * self.kernel_size[0] * self.kernel_size[1] | ||
== offset.shape[1] | ||
) | ||
assert self.deformable_groups * self.kernel_size[0] * self.kernel_size[1] == mask.shape[1] | ||
|
||
out = dcn_v2_conv( | ||
input, | ||
self.weight, | ||
offset, | ||
self.bias, | ||
self.stride, | ||
self.padding, | ||
self.dilation, | ||
self.deformable_groups, | ||
) | ||
|
||
return out | ||
|
||
|
||
class DCN(DCNv2): | ||
def __init__( | ||
self, | ||
in_channels, | ||
out_channels, | ||
kernel_size, | ||
stride, | ||
padding, | ||
dilation=1, | ||
deformable_groups=1, | ||
): | ||
super(DCN, self).__init__( | ||
in_channels, out_channels, kernel_size, stride, padding, dilation, deformable_groups | ||
) | ||
|
||
channels_ = self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1] | ||
self.conv_offset_mask = nn.Conv2d( | ||
self.in_channels, | ||
channels_, | ||
kernel_size=self.kernel_size, | ||
stride=self.stride, | ||
padding=self.padding, | ||
bias=True, | ||
) | ||
self.init_offset() | ||
|
||
def init_offset(self): | ||
self.conv_offset_mask.weight.data.zero_() | ||
self.conv_offset_mask.bias.data.zero_() | ||
|
||
def forward(self, input): | ||
print("[INFO] DCN class forward") | ||
out = self.conv_offset_mask(input) | ||
o1, o2, mask = torch.chunk(out, 3, dim=1) | ||
offset = torch.cat((o1, o2), dim=1) | ||
mask = torch.sigmoid(mask) | ||
|
||
return dcn_v2_conv( | ||
input, | ||
self.weight, | ||
offset, | ||
self.bias, | ||
self.stride, | ||
self.padding, | ||
self.dilation, | ||
self.deformable_groups, | ||
mask | ||
) | ||
|
||
|
||
class _DCNv2Pooling(Function): | ||
@staticmethod | ||
def forward( | ||
ctx, | ||
input, | ||
rois, | ||
offset, | ||
spatial_scale, | ||
pooled_size, | ||
output_dim, | ||
no_trans, | ||
group_size=1, | ||
part_size=None, | ||
sample_per_part=4, | ||
trans_std=0.0, | ||
): | ||
ctx.spatial_scale = spatial_scale | ||
ctx.no_trans = int(no_trans) | ||
ctx.output_dim = output_dim | ||
ctx.group_size = group_size | ||
ctx.pooled_size = pooled_size | ||
ctx.part_size = pooled_size if part_size is None else part_size | ||
ctx.sample_per_part = sample_per_part | ||
ctx.trans_std = trans_std | ||
|
||
output, output_count = _backend.dcn_v2_psroi_pooling_forward( | ||
input, | ||
rois, | ||
offset, | ||
ctx.no_trans, | ||
ctx.spatial_scale, | ||
ctx.output_dim, | ||
ctx.group_size, | ||
ctx.pooled_size, | ||
ctx.part_size, | ||
ctx.sample_per_part, | ||
ctx.trans_std, | ||
) | ||
ctx.save_for_backward(input, rois, offset, output_count) | ||
return output | ||
|
||
@staticmethod | ||
@once_differentiable | ||
def backward(ctx, grad_output): | ||
input, rois, offset, output_count = ctx.saved_tensors | ||
grad_input, grad_offset = _backend.dcn_v2_psroi_pooling_backward( | ||
grad_output, | ||
input, | ||
rois, | ||
offset, | ||
output_count, | ||
ctx.no_trans, | ||
ctx.spatial_scale, | ||
ctx.output_dim, | ||
ctx.group_size, | ||
ctx.pooled_size, | ||
ctx.part_size, | ||
ctx.sample_per_part, | ||
ctx.trans_std, | ||
) | ||
|
||
return grad_input, None, grad_offset, None, None, None, None, None, None, None, None | ||
|
||
|
||
dcn_v2_pooling = _DCNv2Pooling.apply | ||
|
||
|
||
class DCNv2Pooling(nn.Module): | ||
def __init__( | ||
self, | ||
spatial_scale, | ||
pooled_size, | ||
output_dim, | ||
no_trans, | ||
group_size=1, | ||
part_size=None, | ||
sample_per_part=4, | ||
trans_std=0.0, | ||
): | ||
super(DCNv2Pooling, self).__init__() | ||
self.spatial_scale = spatial_scale | ||
self.pooled_size = pooled_size | ||
self.output_dim = output_dim | ||
self.no_trans = no_trans | ||
self.group_size = group_size | ||
self.part_size = pooled_size if part_size is None else part_size | ||
self.sample_per_part = sample_per_part | ||
self.trans_std = trans_std | ||
|
||
def forward(self, input, rois, offset): | ||
assert input.shape[1] == self.output_dim | ||
if self.no_trans: | ||
offset = input.new() | ||
return dcn_v2_pooling( | ||
input, | ||
rois, | ||
offset, | ||
self.spatial_scale, | ||
self.pooled_size, | ||
self.output_dim, | ||
self.no_trans, | ||
self.group_size, | ||
self.part_size, | ||
self.sample_per_part, | ||
self.trans_std, | ||
) | ||
|
||
|
||
class DCNPooling(DCNv2Pooling): | ||
def __init__( | ||
self, | ||
spatial_scale, | ||
pooled_size, | ||
output_dim, | ||
no_trans, | ||
group_size=1, | ||
part_size=None, | ||
sample_per_part=4, | ||
trans_std=0.0, | ||
deform_fc_dim=1024, | ||
): | ||
super(DCNPooling, self).__init__( | ||
spatial_scale, | ||
pooled_size, | ||
output_dim, | ||
no_trans, | ||
group_size, | ||
part_size, | ||
sample_per_part, | ||
trans_std, | ||
) | ||
|
||
self.deform_fc_dim = deform_fc_dim | ||
|
||
if not no_trans: | ||
self.offset_mask_fc = nn.Sequential( | ||
nn.Linear( | ||
self.pooled_size * self.pooled_size * self.output_dim, self.deform_fc_dim | ||
), | ||
nn.ReLU(inplace=True), | ||
nn.Linear(self.deform_fc_dim, self.deform_fc_dim), | ||
nn.ReLU(inplace=True), | ||
nn.Linear(self.deform_fc_dim, self.pooled_size * self.pooled_size * 3), | ||
) | ||
self.offset_mask_fc[4].weight.data.zero_() | ||
self.offset_mask_fc[4].bias.data.zero_() | ||
|
||
def forward(self, input, rois): | ||
offset = input.new() | ||
|
||
if not self.no_trans: | ||
|
||
# do roi_align first | ||
n = rois.shape[0] | ||
roi = dcn_v2_pooling( | ||
input, | ||
rois, | ||
offset, | ||
self.spatial_scale, | ||
self.pooled_size, | ||
self.output_dim, | ||
True, # no trans | ||
self.group_size, | ||
self.part_size, | ||
self.sample_per_part, | ||
self.trans_std, | ||
) | ||
|
||
# build mask and offset | ||
offset_mask = self.offset_mask_fc(roi.view(n, -1)) | ||
offset_mask = offset_mask.view(n, 3, self.pooled_size, self.pooled_size) | ||
o1, o2, mask = torch.chunk(offset_mask, 3, dim=1) | ||
offset = torch.cat((o1, o2), dim=1) | ||
mask = torch.sigmoid(mask) | ||
|
||
# do pooling with offset and mask | ||
return ( | ||
dcn_v2_pooling( | ||
input, | ||
rois, | ||
offset, | ||
self.spatial_scale, | ||
self.pooled_size, | ||
self.output_dim, | ||
self.no_trans, | ||
self.group_size, | ||
self.part_size, | ||
self.sample_per_part, | ||
self.trans_std, | ||
) | ||
* mask | ||
) | ||
# only roi_align | ||
return dcn_v2_pooling( | ||
input, | ||
rois, | ||
offset, | ||
self.spatial_scale, | ||
self.pooled_size, | ||
self.output_dim, | ||
self.no_trans, | ||
self.group_size, | ||
self.part_size, | ||
self.sample_per_part, | ||
self.trans_std, | ||
) |
Oops, something went wrong.