-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #21 from ArneBinder/integrate_pie_dataset_classes
integrate `Dataset` related classes from PyTorch-IE
- Loading branch information
Showing
36 changed files
with
4,957 additions
and
191 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
from .builder import GeneratorBasedBuilder | ||
from .common import ( | ||
EnterDatasetDictMixin, | ||
EnterDatasetMixin, | ||
ExitDatasetDictMixin, | ||
ExitDatasetMixin, | ||
) | ||
from .dataset import Dataset, IterableDataset | ||
from .dataset_dict import DatasetDict | ||
from .document_formatter import DocumentFormatter | ||
|
||
__all__ = [ | ||
"GeneratorBasedBuilder", | ||
"Dataset", | ||
"IterableDataset", | ||
"DatasetDict", | ||
"DocumentFormatter", | ||
"EnterDatasetMixin", | ||
"ExitDatasetMixin", | ||
"EnterDatasetDictMixin", | ||
"ExitDatasetDictMixin", | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,256 @@ | ||
import abc | ||
from typing import Any, Callable, Dict, Optional, Type, Union, overload | ||
|
||
import datasets | ||
from pytorch_ie.core.document import Document | ||
from pytorch_ie.utils.hydra import resolve_target | ||
|
||
from .dataset import ( | ||
Dataset, | ||
DocumentConvertersType, | ||
IterableDataset, | ||
decorate_convert_to_dict_of_lists, | ||
get_pie_dataset_type, | ||
) | ||
|
||
|
||
def get_general_dataset_builder_parent_class( | ||
obj: datasets.builder.DatasetBuilder, | ||
) -> Type[datasets.builder.DatasetBuilder]: | ||
general_dataset_builder_parent_classes = [ | ||
cls | ||
for cls in datasets.builder.DatasetBuilder.__subclasses__() | ||
if cls != PieDatasetBuilder and isinstance(obj, cls) | ||
] | ||
if len(general_dataset_builder_parent_classes) != 1: | ||
raise TypeError("can not determine general dataset builder parent class of the object") | ||
return general_dataset_builder_parent_classes[0] | ||
|
||
|
||
class PieDatasetBuilder(datasets.builder.DatasetBuilder): | ||
# The default pytorch-ie document type for the dataset. | ||
DOCUMENT_TYPE: Optional[Type[Document]] = None | ||
# A mapping from config names to PIE document types. Use this to specify individual | ||
# document types per config. | ||
DOCUMENT_TYPES: Dict[str, Type[Document]] = {} | ||
|
||
# The default path to the Huggingface dataset loading script that will be used as base dataset. | ||
BASE_DATASET_PATH: Optional[str] = None | ||
# A mapping from config names to Huggingface dataset loading script paths. Use this to specify individual | ||
# base datasets for each config. | ||
BASE_DATASET_PATHS: Dict[str, str] = {} | ||
|
||
# Define kwargs to create base configs. This should contain config names as keys | ||
# and the respective config kwargs dicts as values. If the config name is not contained, a new entry | ||
# {"name": config_name} will be created for it, i.e. the config name is passed as base config name. | ||
# This default behaviour can be disabled by setting BASE_CONFIG_KWARGS_DICT to None. | ||
BASE_CONFIG_KWARGS_DICT: Optional[Dict[Optional[str], Dict[str, Any]]] = {} | ||
# Define base builder kwargs. This should contain config names as keys and the respective | ||
# builder kwargs dicts as values. | ||
BASE_BUILDER_KWARGS_DICT: Optional[Dict[Optional[str], Dict[str, Any]]] = None | ||
|
||
# Define document converters. This should be a mapping from document types as keys to the respective | ||
# document converters as values. The document converters can be either callables or dicts | ||
# that map from original field names to new field names. If a callable is provided, it will be used to | ||
# convert the document. If a dict is provided, it will be used to rename the fields of the | ||
# document (this is done by renaming the columns which is much more efficient). | ||
DOCUMENT_CONVERTERS: DocumentConvertersType = {} | ||
|
||
def __init__( | ||
self, | ||
base_dataset_kwargs: Optional[Dict[str, Any]] = None, | ||
document_converters: Optional[ | ||
Dict[Union[Type[Document], str], Union[Callable[..., Document], Dict[str, str], str]] | ||
] = None, | ||
**kwargs, | ||
): | ||
self.base_builder = None | ||
config_name = kwargs.get("config_name", None) | ||
base_dataset_path = self.BASE_DATASET_PATHS.get(config_name, self.BASE_DATASET_PATH) | ||
if base_dataset_path is not None: | ||
base_dataset_kwargs = base_dataset_kwargs or {} | ||
base_builder_kwargs: Dict[str, Any] = {} | ||
|
||
# get base config kwargs from mapping | ||
if self.BASE_CONFIG_KWARGS_DICT is not None: | ||
if config_name in self.BASE_CONFIG_KWARGS_DICT: | ||
config_kwargs = self.BASE_CONFIG_KWARGS_DICT[config_name] | ||
else: | ||
# if the config name is not in BASE_CONFIG_KWARGS_DICT, | ||
# we pass it as base config name | ||
config_kwargs = {"name": config_name} | ||
base_builder_kwargs.update(config_kwargs) | ||
|
||
# get base builder kwargs from mapping | ||
if self.BASE_BUILDER_KWARGS_DICT is not None: | ||
base_builder_kwargs.update(self.BASE_BUILDER_KWARGS_DICT[config_name]) | ||
|
||
base_builder_kwargs.update(base_dataset_kwargs) | ||
self.base_builder = datasets.load.load_dataset_builder( | ||
path=base_dataset_path, | ||
**base_builder_kwargs, | ||
) | ||
# Ensure that self and self.base_builder are derived from the same subclass of | ||
# datasets.builder.DatasetBuilder. | ||
base_builder_general_parent_class = get_general_dataset_builder_parent_class( | ||
self.base_builder | ||
) | ||
self_general_parent_class = get_general_dataset_builder_parent_class(self) | ||
if base_builder_general_parent_class != self_general_parent_class: | ||
raise TypeError( | ||
f"The PyTorch-IE dataset builder class '{type(self).__name__}' is derived from " | ||
f"{self_general_parent_class}, but the base builder is not which is not allowed. The base builder " | ||
f"is of type '{type(self.base_builder).__name__}' that is derived from " | ||
f"{base_builder_general_parent_class}. Consider to derive your PyTorch-IE dataset builder " | ||
f"'{type(self).__name__}' from a PyTorch-IE variant of " | ||
f"'{base_builder_general_parent_class.__name__}'." | ||
) | ||
|
||
# append the base_builder config_id to the hash, otherwise the base_builder config arguments | ||
# are not respected in the cache fingerprint | ||
if "hash" in kwargs: | ||
kwargs["hash"] = f"{kwargs['hash']}-{self.base_builder.config_id}" | ||
|
||
# set base path to base builder base path. This is required so that the download manager | ||
# works correctly with relative paths. | ||
kwargs["base_path"] = self.base_builder.base_path | ||
|
||
super().__init__(**kwargs) | ||
|
||
self.document_converters = dict(self.DOCUMENT_CONVERTERS) | ||
if document_converters is not None: | ||
for document_type_or_str, document_converter_or_str in document_converters.items(): | ||
document_type = resolve_target(document_type_or_str) | ||
if isinstance(document_type, type) and issubclass(document_type, Document): | ||
document_converter: Union[Callable[..., Any], dict[str, str]] | ||
if isinstance(document_converter_or_str, str): | ||
document_converter = resolve_target(document_converter_or_str) | ||
else: | ||
document_converter = document_converter_or_str | ||
|
||
self.document_converters[document_type] = document_converter | ||
else: | ||
raise TypeError( | ||
f"The key '{document_type_or_str}' for one of the converters " | ||
f"can not be resolved to a document type." | ||
) | ||
|
||
def _info(self): | ||
return self.base_builder._info() | ||
|
||
def _split_generators(self, dl_manager): | ||
return self.base_builder._split_generators(dl_manager) | ||
|
||
@property | ||
def document_type(self) -> Optional[Type[Document]]: | ||
return self.DOCUMENT_TYPES.get(self.config.name, self.DOCUMENT_TYPE) | ||
|
||
@abc.abstractmethod | ||
def _generate_document(self, example, **kwargs): | ||
pass | ||
|
||
def _generate_document_kwargs(self, dataset): | ||
return None | ||
|
||
@overload # type: ignore | ||
def _convert_dataset_single(self, dataset: datasets.IterableDataset) -> IterableDataset: | ||
... | ||
|
||
@overload # type: ignore | ||
def _convert_dataset_single(self, dataset: datasets.Dataset) -> Dataset: | ||
... | ||
|
||
def _convert_dataset_single( | ||
self, dataset: Union[datasets.Dataset, datasets.IterableDataset] | ||
) -> Union[Dataset, IterableDataset]: | ||
document_type = self.document_type | ||
if document_type is None: | ||
raise TypeError( | ||
f"the builder has no DOCUMENT_TYPE or DOCUMENT_TYPES[{self.config.name}] defined" | ||
) | ||
|
||
fn = decorate_convert_to_dict_of_lists(self._generate_document) | ||
fn_kwargs = self._generate_document_kwargs(dataset) | ||
mapped_dataset = dataset.map(fn, fn_kwargs=fn_kwargs) | ||
dataset_type = get_pie_dataset_type(mapped_dataset) | ||
result = dataset_type.from_hf_dataset( | ||
dataset=mapped_dataset, | ||
document_type=document_type, | ||
document_converters=dict(self.document_converters), | ||
) | ||
return result | ||
|
||
@overload # type: ignore | ||
def _convert_datasets(self, datasets: datasets.DatasetDict) -> datasets.DatasetDict: | ||
... | ||
|
||
@overload # type: ignore | ||
def _convert_datasets( | ||
self, datasets: datasets.IterableDatasetDict | ||
) -> datasets.IterableDatasetDict: | ||
... | ||
|
||
@overload # type: ignore | ||
def _convert_datasets(self, datasets: datasets.IterableDataset) -> IterableDataset: | ||
... | ||
|
||
@overload # type: ignore | ||
def _convert_datasets(self, datasets: datasets.Dataset) -> Dataset: | ||
... | ||
|
||
def _convert_datasets( | ||
self, | ||
datasets: Union[ | ||
datasets.Dataset, | ||
datasets.IterableDataset, | ||
datasets.DatasetDict, | ||
datasets.IterableDatasetDict, | ||
], | ||
) -> Union[Dataset, IterableDataset, datasets.DatasetDict, datasets.IterableDatasetDict]: | ||
if isinstance(datasets, dict): | ||
return type(datasets)( | ||
{k: self._convert_dataset_single(v) for k, v in datasets.items()} | ||
) | ||
else: | ||
return self._convert_dataset_single(datasets) | ||
|
||
def as_dataset( | ||
self, | ||
split: Optional[datasets.Split] = None, | ||
run_post_process=True, | ||
verification_mode: Optional[Union[datasets.VerificationMode, str]] = None, | ||
ignore_verifications="deprecated", | ||
in_memory=False, | ||
) -> Union[Dataset, datasets.DatasetDict]: | ||
dataset = super().as_dataset( | ||
split=split, | ||
run_post_process=run_post_process, | ||
ignore_verifications=ignore_verifications, | ||
in_memory=in_memory, | ||
verification_mode=verification_mode, | ||
) | ||
converted_datasets = self._convert_datasets(datasets=dataset) | ||
return converted_datasets | ||
|
||
def as_streaming_dataset( | ||
self, | ||
split: Optional[str] = None, | ||
base_path: Optional[str] = None, | ||
) -> Union[IterableDataset, datasets.IterableDatasetDict]: # type: ignore | ||
dataset: Union[ | ||
datasets.IterableDataset, datasets.IterableDatasetDict | ||
] = super().as_streaming_dataset( | ||
split=split, base_path=base_path | ||
) # type: ignore | ||
converted_datasets = self._convert_datasets(datasets=dataset) | ||
return converted_datasets | ||
|
||
|
||
class GeneratorBasedBuilder(PieDatasetBuilder, datasets.builder.GeneratorBasedBuilder): | ||
def _generate_examples(self, *args, **kwargs): | ||
return self.base_builder._generate_examples(*args, **kwargs) | ||
|
||
|
||
class ArrowBasedBuilder(PieDatasetBuilder, datasets.builder.ArrowBasedBuilder): | ||
def _generate_tables(self, *args, **kwargs): | ||
return self.base_builder._generate_tables(*args, **kwargs) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
from abc import ABC, abstractmethod | ||
from typing import Optional, Union | ||
|
||
from .dataset import Dataset, IterableDataset | ||
|
||
|
||
class EnterDatasetMixin(ABC): | ||
"""Mixin for processors that enter a dataset context.""" | ||
|
||
@abstractmethod | ||
def enter_dataset( | ||
self, dataset: Union[Dataset, IterableDataset], name: Optional[str] = None | ||
) -> None: | ||
"""Enter dataset context.""" | ||
|
||
|
||
class ExitDatasetMixin(ABC): | ||
"""Mixin for processors that exit a dataset context.""" | ||
|
||
@abstractmethod | ||
def exit_dataset( | ||
self, dataset: Union[Dataset, IterableDataset], name: Optional[str] = None | ||
) -> None: | ||
"""Exit dataset context.""" | ||
|
||
|
||
class EnterDatasetDictMixin(ABC): | ||
"""Mixin for processors that enter a dataset dict context.""" | ||
|
||
@abstractmethod | ||
def enter_dataset_dict(self, dataset_dict) -> None: | ||
"""Enter dataset dict context.""" | ||
|
||
|
||
class ExitDatasetDictMixin(ABC): | ||
"""Mixin for processors that exit a dataset dict context.""" | ||
|
||
@abstractmethod | ||
def exit_dataset_dict(self, dataset_dict) -> None: | ||
"""Exit dataset dict context.""" |
Oops, something went wrong.