Skip to content

AndrewHuffman/PythonPlayground

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Python Playground

Resources

Best Python Data Viz Libraries

The versatility of Matplotlib can be used to make many visualization types:

  • Scatter plots
  • Bar charts and Histograms
  • Line plots
  • Pie charts
  • Stem plots
  • Contour plots
  • Quiver plots
  • Spectrograms

Seaborn is a popular data visualization library that is built on top of Matplotlib. Seaborn’s default styles and color palettes are much more sophisticated than Matplotlib. Beyond that, Seaborn is a higher-level library, meaning it’s easier to generate certain kinds of plots, including heat maps, time series, and violin plots.

Altair is a declarative statistical visualization python library based on Vega-lite. Declarative means you only need to mention the links between data columns to the encoding channels, such as x-axis, y-axis, color, etc. and the rest of the plotting details are handled automatically. Being declarative makes Altair simple, friendly and consistent. It is easy to design effective and beautiful visualizations with a minimal amount of code using Altair.

Geoplotlib is a toolbox used for plotting geographical data and map creation. It can be used to create a variety of map-types, like choropleths, heatmaps, and dot density maps. Pyglet (an object-oriented programming interface) is required to be installed to use Geoplotlib.

Geoplotlib reduces the complexity of designing visualizations by providing a set of in-built tools for the most common tasks such as density visualization, spatial graphs, and shape files.

Since most Python data visualization libraries don’t offer maps, it’s good to have a library dedicated to them.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages