Skip to content

Commit

Permalink
Implement reviewer comments
Browse files Browse the repository at this point in the history
TASK:
- IL-347
  • Loading branch information
FlorianSchepersAA committed Apr 3, 2024
1 parent 24ec873 commit cfc177b
Show file tree
Hide file tree
Showing 4 changed files with 79 additions and 69 deletions.
2 changes: 1 addition & 1 deletion src/examples/evaluation.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -401,7 +401,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
138 changes: 74 additions & 64 deletions src/examples/user_journey.ipynb
Original file line number Diff line number Diff line change
@@ -1,5 +1,37 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from dotenv import load_dotenv\n",
"from intelligence_layer.core import InMemoryTracer, LuminousControlModel, TextChunk\n",
"from intelligence_layer.evaluation import (\n",
" Aggregator,\n",
" Evaluator,\n",
" Example,\n",
" InMemoryAggregationRepository,\n",
" InMemoryDatasetRepository,\n",
" InMemoryEvaluationRepository,\n",
" InMemoryRunRepository,\n",
" Runner,\n",
")\n",
"from intelligence_layer.use_cases import (\n",
" ClassifyInput,\n",
" PromptBasedClassify,\n",
" SingleLabelClassifyAggregationLogic,\n",
" SingleLabelClassifyEvaluation,\n",
" SingleLabelClassifyEvaluationLogic,\n",
" SingleLabelClassifyOutput,\n",
")\n",
"import json\n",
"\n",
"\n",
"load_dotenv()"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -49,9 +81,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Luckily, the Intelligence provides some classification tasks out of the box.\n",
"Luckily, the Intelligence Layer provides some classification tasks out of the box.\n",
"\n",
"Let's import it and run!\n"
"Let's run it!\n"
]
},
{
Expand All @@ -60,12 +92,6 @@
"metadata": {},
"outputs": [],
"source": [
"from intelligence_layer.core import TextChunk, InMemoryTracer\n",
"from intelligence_layer.use_cases import PromptBasedClassify, ClassifyInput\n",
"from dotenv import load_dotenv\n",
"\n",
"load_dotenv()\n",
"\n",
"# instantiating the default task\n",
"prompt_based_classify = PromptBasedClassify()\n",
"\n",
Expand Down Expand Up @@ -112,9 +138,6 @@
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"\n",
"with open(\"data/classify_examples.json\", \"r\") as file:\n",
" labeled_examples: list[dict[str, str]] = json.load(file)\n",
"\n",
Expand All @@ -125,7 +148,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"The Intelligence layer offers support to run task evaluations.\n",
"The Intelligence Layer offers support to run task evaluations.\n",
"\n",
"First, we have to create a dataset inside a repository.\n",
"There are different repositories (that persist datasets in different ways), but an `InMemoryDatasetRepository` will do for now.\n"
Expand All @@ -137,8 +160,6 @@
"metadata": {},
"outputs": [],
"source": [
"from intelligence_layer.evaluation import InMemoryDatasetRepository, Example\n",
"\n",
"dataset_repository = InMemoryDatasetRepository()\n",
"\n",
"dataset_id = dataset_repository.create_dataset(\n",
Expand Down Expand Up @@ -182,20 +203,6 @@
"metadata": {},
"outputs": [],
"source": [
"from intelligence_layer.evaluation import (\n",
" Evaluator,\n",
" InMemoryEvaluationRepository,\n",
" InMemoryRunRepository,\n",
" InMemoryAggregationRepository,\n",
" Runner,\n",
" Aggregator,\n",
")\n",
"from intelligence_layer.use_cases import (\n",
" SingleLabelClassifyEvaluationLogic,\n",
" SingleLabelClassifyAggregationLogic,\n",
")\n",
"\n",
"\n",
"# we need a few repositories to store runs, evals and aggregated evaluations\n",
"run_repository = InMemoryRunRepository()\n",
"evaluation_repository = InMemoryEvaluationRepository()\n",
Expand Down Expand Up @@ -259,7 +266,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, let's aggregate all individual evaluations to get seom eval statistics."
"Finally, let's aggregate all individual evaluations to get some eval statistics."
]
},
{
Expand Down Expand Up @@ -290,12 +297,6 @@
"metadata": {},
"outputs": [],
"source": [
"from intelligence_layer.use_cases import (\n",
" SingleLabelClassifyOutput,\n",
" SingleLabelClassifyEvaluation,\n",
")\n",
"\n",
"\n",
"def get_failed_examples(run_id: str, eval_id: str, dataset_id: str, first_n: int):\n",
" overview = [\n",
" {\n",
Expand All @@ -304,11 +305,11 @@
" \"result\": sorted(\n",
" list(\n",
" next(\n",
" e\n",
" for e in run_repository.example_outputs(\n",
" example\n",
" for example in run_repository.example_outputs(\n",
" run_id, SingleLabelClassifyOutput\n",
" )\n",
" if e.example_id == example.id\n",
" if example.example_id == example.id\n",
" ).output.scores.items()\n",
" ),\n",
" key=lambda i: i[1],\n",
Expand All @@ -324,7 +325,7 @@
" dataset_id=dataset_id, input_type=ClassifyInput, expected_output_type=str\n",
" )\n",
" ]\n",
" return [e for e in overview if not e[\"eval\"].correct][:first_n]\n",
" return [example for example in overview if not example[\"eval\"].correct][:first_n]\n",
"\n",
"\n",
"get_failed_examples(run_overview.id, eval_overview.id, dataset_id, 3)"
Expand Down Expand Up @@ -447,28 +448,7 @@
"source": [
"Cool, this already got us up to 62%!\n",
"\n",
"Notice, how we don't actually tell our classification task, what each class means; we only supply it with all the labels.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"get_failed_examples(\n",
" run_overview_prompt_adjusted.id,\n",
" eval_overview_prompt_adjusted.id,\n",
" cleaned_dataset_id,\n",
" 3,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So far, we have only used `luminous-base-control`. Let's upgrade to a bigger model!\n"
"So far, we only used the `luminous-base-control` model. Let's see if we can improve our classifications by upgrading to a bigger model!"
]
},
{
Expand All @@ -477,8 +457,6 @@
"metadata": {},
"outputs": [],
"source": [
"from intelligence_layer.core import LuminousControlModel\n",
"\n",
"classify_with_extended = PromptBasedClassify(\n",
" instruction=adjusted_prompt, model=LuminousControlModel(\"luminous-supreme-control\")\n",
")"
Expand Down Expand Up @@ -518,6 +496,38 @@
"source": [
"aggregation_overview_with_extended"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So using a bigger model slightly improved our results to 66.66%.\n",
"\n",
"Feel free to further play around and improve our classification example. \n",
"\n",
"Notice, for instance, that so far we do not tell our classification task what each class means. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"get_failed_examples(\n",
" run_overview_prompt_adjusted.id,\n",
" eval_overview_prompt_adjusted.id,\n",
" cleaned_dataset_id,\n",
" 3,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The model has to 'guess' what we mean by each class purely from the given labels. In order to takle this issue you could use the `PromptBasedClassifyWithDefinitions` task to also provide a short description for each class."
]
}
],
"metadata": {
Expand All @@ -536,7 +546,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.0"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
6 changes: 3 additions & 3 deletions src/intelligence_layer/use_cases/classify/classify.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,9 +93,9 @@ class AggregatedSingleLabelClassifyEvaluation(BaseModel):
Attributes:
percentage_correct: Percentage of answers that were considered to be correct.
confusion_matrix: How often each label was confused with each other.
by_label: Each label along with a couple aggregated statistics.
missing_labels: Each label missing from the results accompanied by the missing count.
confusion_matrix: A matrix showing the predicted classifications vs the expected classifications.
by_label: Each label along side the counts how often it was expected or predicted.
missing_labels: Each expected label which is missing in the set of possible labels in the task input and the number of its occurrences.
"""

percentage_correct: float
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ def format_input(text: str, labels: frozenset[str]) -> str:
if label.name in labels
)
return f"""Labels:
{', '.join(l.name for l in self._labels_with_definitions)}
{', '.join(label.name for label in self._labels_with_definitions if label.name in labels)}
Definitions:
{definitions}
Expand Down

0 comments on commit cfc177b

Please sign in to comment.