Skip to content

Commit

Permalink
feat: Add How-to describing complete incremental evaluation workflow
Browse files Browse the repository at this point in the history
TASK: IL-313
  • Loading branch information
MerlinKallenbornAA authored and SebastianNiehusAA committed May 22, 2024
1 parent 20db23b commit c0370ba
Show file tree
Hide file tree
Showing 5 changed files with 225 additions and 4 deletions.
2 changes: 1 addition & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
...

### New Features
...
- Add `how_to_implement_complete_incremental_evaluation_flow`

### Fixes
- The document index client now correctly URL-encodes document names in its queries.
Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,7 @@ The how-tos are quick lookups about how to do things. Compared to the tutorials,
| [...retrieve data for analysis](./src/documentation/how_tos/how_to_retrieve_data_for_analysis.ipynb) | Retrieve experiment data in multiple different ways |
| [...implement a custom human evaluation](./src/documentation/how_tos/how_to_human_evaluation_via_argilla.ipynb) | Necessary steps to create an evaluation with humans as a judge via Argilla |
| [...implement elo evaluations](./src/documentation/how_tos/how_to_implement_elo_evaluations.ipynb) | Evaluate runs and create ELO ranking for them |

| [...implement complete incremental evaluation flow](./src/documentation/how_tos/how_to_implement_complete_incremental_evaluation_flow.ipynb) | Run complete incremental evaluation flow from runner to aggretation
# Models

Currently, we support a bunch of models accessible via the Aleph Alpha API. Depending on your local setup, you may even have additional models available.
Expand Down
16 changes: 16 additions & 0 deletions src/documentation/how_tos/example_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
from intelligence_layer.evaluation.evaluation.evaluator.incremental_evaluator import (
ComparisonEvaluation,
EloEvaluationLogic,
IncrementalEvaluationLogic,
Matches,
MatchOutcome,
)
Expand Down Expand Up @@ -48,6 +49,21 @@ def do_evaluate(
)


class DummyIncrementalEvaluationLogic(
IncrementalEvaluationLogic[str, str, str, DummyEvaluation]
):
def do_incremental_evaluate(
self,
example: Example[str, str],
outputs: list[SuccessfulExampleOutput[str]],
already_evaluated_outputs: list[list[SuccessfulExampleOutput[str]]],
) -> DummyEvaluation:
output_str = "(" + (", ".join(o.output for o in outputs)) + ")"
return DummyEvaluation(
eval=f"{example.input}, {example.expected_output}, {output_str} -> evaluation"
)


class DummyEloEvaluationLogic(EloEvaluationLogic[str, str, str]):
def grade(
self,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,205 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from documentation.how_tos.example_data import (\n",
" DummyAggregationLogic,\n",
" DummyEvaluation,\n",
" DummyExample,\n",
" DummyTask,\n",
")\n",
"from intelligence_layer.evaluation import (\n",
" Aggregator,\n",
" IncrementalEvaluator,\n",
" InMemoryAggregationRepository,\n",
" InMemoryEvaluationRepository,\n",
" InMemoryRunRepository,\n",
" Runner,\n",
")\n",
"from intelligence_layer.evaluation.dataset.domain import Example\n",
"from intelligence_layer.evaluation.dataset.in_memory_dataset_repository import (\n",
" InMemoryDatasetRepository,\n",
")\n",
"from intelligence_layer.evaluation.evaluation.evaluator.incremental_evaluator import (\n",
" IncrementalEvaluationLogic,\n",
")\n",
"from intelligence_layer.evaluation.run.domain import SuccessfulExampleOutput"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to implement complete incremental evaluation workflows from running (multiple) tasks to aggregation\n",
"This notebook outlines how to:\n",
" - run multiple tasks and configurations on the same dataset\n",
" - perform evaluations in an incremental fashion, i.e., adding additional runs to your existing evaluations without the need for recalculation\n",
" - run aggregation on these evaluations\n",
" \n",
"## Step-by-Step Guide\n",
"1. Setup:\n",
"- Initialize all necessary repositories: \n",
" - dataset\n",
" - run\n",
" - evaluation\n",
" - aggregation\n",
"- Create dataset from example(s)\n",
"- Initialized task(s)\n",
"- Initialize `Runner` for each task \n",
"2. Run task(s) for the dataset (see [here](./how_to_run_a_task_on_a_dataset.ipynb))\n",
"3. Compose a list of IDs of runs you want to evaluate.\n",
"4. Define and initialize an `IncrementalEvaluationLogic`; This is similar to a normal `EvaluationLogic` (see [here](./how_to_implement_a_simple_evaluation_and_aggregation_logic.ipynb)) but you also have to implement your own `do_incremental_evaluate` method\n",
"5. Initialize an `IncrementalEvaluator` with the repositories and your custom `IncrementalEvaluationLogic`\n",
"6. Call the `evaluate_runs` method of the `IncrementalEvaluator` to evaluate the run(s) and create a single `EvaluationOverview`\n",
"7. Aggregate your evaluation of the run(s) using the [standard aggregation](./how_to_aggregate_evaluations.ipynb) or using a [custom aggregation logic](./how_to_implement_a_simple_evaluation_and_aggregation_logic.ipynb)\n",
"\n",
"#### Steps for addition of new runs \n",
"8. Define and run some new task(s)\n",
"9. Define a list for runs that should not be re-evaluated\n",
"10. Call the `evaluate_additional_runs` method of the `IncrementalEvaluator`:\n",
" - `run_ids`: Runs to be included in the evaluation results, including those that have been evaluated before\n",
" - `previous_evaluation_ids`: Runs **not** to be re-evaluated, depending on the specific implementation of the `do_incremental_evaluate` method\n",
"11. Aggregate all your `EvaluationOverview`s in your `EvaluationRepository`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Preparation\n",
"examples = [\n",
" DummyExample(input=\"input1\", expected_output=\"expected_output1\", data=\"data1\")\n",
"]\n",
"\n",
"# Step 1\n",
"dataset_repository = InMemoryDatasetRepository()\n",
"run_repository = InMemoryRunRepository()\n",
"evaluation_repository = InMemoryEvaluationRepository()\n",
"aggregation_repository = InMemoryAggregationRepository()\n",
"\n",
"my_dataset = dataset_repository.create_dataset(examples, \"MyDataset\")\n",
"\n",
"first_task = DummyTask()\n",
"first_runner = Runner(first_task, dataset_repository, run_repository, \"MyFirstRun\")\n",
"\n",
"# Step 2\n",
"first_run_overview = first_runner.run_dataset(my_dataset.id)\n",
"print(f\"ID of first run: {first_run_overview.id}\")\n",
"\n",
"# Step 3\n",
"run_overview_ids_for_first_evaluation = []\n",
"for run_overview in run_repository.run_overviews():\n",
" if (\n",
" run_overview.description == \"MyFirstRun\"\n",
" ): ## This is filter for all the runs you want to include\n",
" run_overview_ids_for_first_evaluation.append(run_overview.id)\n",
"\n",
"\n",
"# Step 4\n",
"class DummyIncrementalEvaluationLogic(\n",
" IncrementalEvaluationLogic[str, str, str, DummyEvaluation]\n",
"):\n",
" def do_incremental_evaluate(\n",
" self,\n",
" example: Example[str, str],\n",
" outputs: list[SuccessfulExampleOutput[str]],\n",
" already_evaluated_outputs: list[list[SuccessfulExampleOutput[str]]],\n",
" ) -> DummyEvaluation:\n",
" output_str = \"(\" + (\", \".join(o.output for o in outputs)) + \")\"\n",
" return DummyEvaluation(\n",
" eval=f\"{example.input}, {example.expected_output}, {output_str}, {already_evaluated_outputs} -> evaluation\"\n",
" )\n",
"\n",
"\n",
"incremental_evaluation_logic = DummyIncrementalEvaluationLogic()\n",
"\n",
"# Step 5\n",
"incremental_evaluator = IncrementalEvaluator(\n",
" dataset_repository,\n",
" run_repository,\n",
" evaluation_repository,\n",
" \"My incremental evaluation\",\n",
" incremental_evaluation_logic,\n",
")\n",
"\n",
"# Step 6\n",
"evaluation_overview_first_task = incremental_evaluator.evaluate_runs(\n",
" *run_overview_ids_for_first_evaluation\n",
")\n",
"\n",
"# Step 7\n",
"aggregation_logic = DummyAggregationLogic()\n",
"aggregator = Aggregator(\n",
" evaluation_repository, aggregation_repository, \"MyAggregator\", aggregation_logic\n",
")\n",
"first_aggregation_overview = aggregator.aggregate_evaluation(\n",
" *evaluation_repository.evaluation_overview_ids()\n",
")\n",
"print(f\"First aggregation: {first_aggregation_overview}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## Addition of new task/run\n",
"# Step 8\n",
"second_task = DummyTask()\n",
"second_runner = Runner(second_task, dataset_repository, run_repository, \"MySecondRun\")\n",
"second_run_overview = second_runner.run_dataset(my_dataset.id)\n",
"print(f\"ID of second run: {second_run_overview.id}\")\n",
"\n",
"# Step 9\n",
"already_evaluated_run_ids = evaluation_repository.evaluation_overview_ids()\n",
"\n",
"# Step 10\n",
"incremental_evaluator.evaluate_additional_runs(\n",
" *run_repository.run_overview_ids(),\n",
" previous_evaluation_ids=already_evaluated_run_ids,\n",
")\n",
"\n",
"# Step 11\n",
"second_aggregation_overview = aggregator.aggregate_evaluation(\n",
" *evaluation_repository.evaluation_overview_ids()\n",
")\n",
"print(second_aggregation_overview)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@
"evaluation_repository = InMemoryEvaluationRepository()\n",
"evaluation_logic = DummyEloEvaluationLogic()\n",
"\n",
"# Step 3\n",
"# Step 2\n",
"evaluator = IncrementalEvaluator(\n",
" dataset_repository,\n",
" run_repository,\n",
Expand All @@ -67,7 +67,7 @@
"\n",
"evaluation_overview = evaluator.evaluate_runs(*run_ids)\n",
"\n",
"# Step 4\n",
"# Step 3\n",
"print(evaluation_overview.id)"
]
}
Expand Down

0 comments on commit c0370ba

Please sign in to comment.