Skip to content

Advestis/adilsm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Install

pip install adilsm

Description

ILSM is Integrated Latent Multi Source Model.

Reference

https://doi.org/10.36922/aih.3427

Usage

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import adilsm.adilsm as ilsm

max_noise_level = 0.1
# Generate a random non-negative matrix with 100 rows and 10 columns
A = np.random.rand(100, 10)
# Swap the columns of the A and add some noise to generate B
B = np.random.permutation(A.T).T + np.random.uniform(low=0, high=max_noise_level, size=A.shape)
# Add noise to A
A += np.random.uniform(low=0, high=max_noise_level, size=A.shape)

# ISM is expected to recognize that A and B convey the same information up to some noise,
# albeit with the columns of B swapped around. Heatmaps of the loadings of A and B columns
# on ISM components show the effective permutation. 

Xs = [A, B]
n_embedding, n_themes = [10,10]

ilsm_result = ilsm.ism(Xs, n_embedding, n_themes, norm_columns=False, update_h_ism=True,
                                    max_iter_mult=200, fast_mult_rules=True, sparsity_coeff=.8)
hv = ilsm_result['HV']
hv_sparse = ilsm_result['HV_SPARSE']
hhii = ilsm_result['HHII']
w_ism = ilsm_result['W']
h_ism = ilsm_result['H']
q_ism = ilsm_result['Q']
Xs_emb = ilsm_result['EMBEDDING']
Xs_norm = ilsm_result['NORMED_VIEWS']

fig, ax = plt.subplots(1, 2, figsize=(10, 5), constrained_layout=True)
ax[0].imshow(hv[0], cmap='viridis', aspect='auto')
# Add labels and title
ax[0].set_xlabel('Component')
ax[0].set_ylabel('Column')
ax[0].set_title('Loadings of A columns on ISM components')
ax[1].imshow(hv[1], cmap='viridis', aspect='auto')
# Add labels and title
ax[1].set_xlabel('Component')
ax[1].set_ylabel('Column')
ax[1].set_title('Loadings of B columns on ISM components')

# Show the plot
plt.show()

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published