forked from ariel-research/fairpyx
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request ariel-research#6 from Final-project-distribution-o…
…f-courses/main pull request
- Loading branch information
Showing
16 changed files
with
4,931 additions
and
1,624 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
""" | ||
Compare the performance of algorithms for fair course allocation. | ||
Programmer: Erel Segal-Halevi | ||
Since: 2023-07 | ||
""" | ||
import os | ||
######### COMMON VARIABLES AND ROUTINES ########## | ||
|
||
import random | ||
|
||
from fairpyx import Instance, AgentBundleValueMatrix, divide | ||
from typing import * | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import pandas as pd | ||
import ast | ||
import seaborn as sns | ||
import fairpyx.algorithms as crs | ||
|
||
max_value = 1000 | ||
normalized_sum_of_values = 1000 | ||
TIME_LIMIT = 100 | ||
|
||
|
||
def create_initial_budgets(num_of_agents: int, beta: float = 100) -> dict: | ||
# Create initial budgets for each agent, uniformly distributed in the range [1, 1 + beta] | ||
initial_budgets = np.random.uniform(1, 1 + beta, num_of_agents) | ||
return {f's{agent + 1}': initial_budgets[agent] for agent in range(num_of_agents)} | ||
|
||
|
||
def evaluate_algorithm_on_instance(algorithm, instance, **kwargs): | ||
beta = kwargs.get("beta", 100) | ||
initial_budgets = create_initial_budgets(instance.num_of_agents, beta) | ||
allocation = divide(algorithm, instance=instance, initial_budgets=initial_budgets, **kwargs) | ||
|
||
matrix = AgentBundleValueMatrix(instance, allocation) | ||
matrix.use_normalized_values() | ||
return { | ||
"utilitarian_value": matrix.utilitarian_value(), | ||
"egalitarian_value": matrix.egalitarian_value(), | ||
"max_envy": matrix.max_envy(), | ||
"mean_envy": matrix.mean_envy(), | ||
"max_deficit": matrix.max_deficit(), | ||
"mean_deficit": matrix.mean_deficit(), | ||
"num_with_top_1": matrix.count_agents_with_top_rank(1), | ||
"num_with_top_2": matrix.count_agents_with_top_rank(2), | ||
"num_with_top_3": matrix.count_agents_with_top_rank(3), | ||
} | ||
|
||
|
||
######### EXPERIMENT WITH UNIFORMLY-RANDOM DATA ########## | ||
|
||
def course_allocation_with_random_instance_uniform( | ||
num_of_agents: int, num_of_items: int, | ||
value_noise_ratio: float, | ||
algorithm: Callable, | ||
random_seed: int, **kwargs): | ||
agent_capacity_bounds = [6, 6] | ||
item_capacity_bounds = [40, 40] | ||
np.random.seed(random_seed) | ||
instance = Instance.random_uniform( | ||
num_of_agents=num_of_agents, num_of_items=num_of_items, | ||
normalized_sum_of_values=normalized_sum_of_values, | ||
agent_capacity_bounds=agent_capacity_bounds, | ||
item_capacity_bounds=item_capacity_bounds, | ||
item_base_value_bounds=[1, max_value], | ||
item_subjective_ratio_bounds=[1 - value_noise_ratio, 1 + value_noise_ratio] | ||
) | ||
return evaluate_algorithm_on_instance(algorithm, instance, **kwargs) | ||
|
||
|
||
######### COMPARING USING CACHE - TABU SEARCH ########## | ||
|
||
RESULTS_CACHE_TABU_SEARCH = "results/compering_using_cache_tabu_search.csv" | ||
|
||
def run_cache_experiment_tabu_search(): | ||
# Run on uniformly-random data with beta and delta parameters: | ||
experiment = experiments_csv.Experiment("results/", "compering_using_cache_tabu_search.csv", | ||
backup_folder="results/backup/") | ||
input_ranges = { | ||
"num_of_agents": [10, 20, 30], | ||
"num_of_items": [5, 10, 15], | ||
"value_noise_ratio": [0, 0.2], | ||
# "value_noise_ratio": [0, 0.2, 0.4, 0.8, 1], | ||
"beta": [3], | ||
"delta": [{0.5}], | ||
# "delta": [{0.001}, {0.1}, {0.3}, {0.5}, {0.9}], | ||
"use_cache": [False, True], | ||
"algorithm": [crs.tabu_search], | ||
"random_seed": range(5), | ||
} | ||
experiment.run_with_time_limit(course_allocation_with_random_instance_uniform, input_ranges, time_limit=TIME_LIMIT) | ||
|
||
|
||
|
||
def analyze_experiment_results_cache(): | ||
# Load the results from the CSV file | ||
df = pd.read_csv(RESULTS_CACHE_TABU_SEARCH) | ||
|
||
best_row = df.loc[df['runtime'].idxmin()] | ||
|
||
# Extract relevant columns or parameters | ||
best_use_cache_value = best_row['use_cache'] | ||
best_runtime = best_row['runtime'] | ||
|
||
print(f"Best use_cache: {best_use_cache_value}") | ||
print(f"Corresponding Runtime: {best_runtime} seconds") | ||
|
||
return df | ||
|
||
|
||
##### PLOT ####### | ||
|
||
def plot_speed_vs_param(df, param, algorithm_name): | ||
avg_runtime = df.groupby(param)['runtime'].mean().reset_index() | ||
|
||
plt.figure(figsize=(10, 6)) | ||
sns.lineplot(data=avg_runtime, x=param, y='runtime', marker='o', err_style=None) | ||
plt.title(f'Algorithm Speed vs. {param.capitalize()} for {algorithm_name}') | ||
plt.xlabel(param.capitalize()) | ||
plt.ylabel('Average Runtime (seconds)') | ||
plt.grid(True) | ||
plt.tight_layout() | ||
plt.show() | ||
|
||
|
||
def plot_speed_vs_params(df, param1, param2, algorithm_name): | ||
fig = plt.figure(figsize=(10, 6)) | ||
ax = fig.add_subplot(111, projection='3d') | ||
|
||
param1_values = df[param1] | ||
param2_values = df[param2].apply( | ||
lambda x: float(list(ast.literal_eval(x))[0]) if isinstance(x, str) else x) # Convert if necessary | ||
runtime_values = df['runtime'] | ||
|
||
ax.scatter(param1_values, param2_values, runtime_values, c='b', marker='o') | ||
ax.set_title(f'Algorithm Speed vs. {param1.capitalize()} and {param2.capitalize()} for {algorithm_name}') | ||
ax.set_xlabel(param1.capitalize()) | ||
ax.set_ylabel(param2.capitalize()) | ||
ax.set_zlabel('Runtime (seconds)') | ||
|
||
plt.tight_layout() | ||
plt.show() | ||
|
||
|
||
def plot_runtime_vs_cache(df, algorithm_name): | ||
plt.figure(figsize=(12, 8)) | ||
|
||
# Plotting runtime vs. num_of_agents for each use_cache value | ||
sns.lineplot(data=df[df['use_cache'] == True], x='num_of_agents', y='runtime', marker='o', | ||
label='Use Cache = True') | ||
sns.lineplot(data=df[df['use_cache'] == False], x='num_of_agents', y='runtime', marker='o', | ||
label='Use Cache = False') | ||
|
||
plt.title(f'Runtime vs. Number of Agents for {algorithm_name}') | ||
plt.xlabel('Number of Agents') | ||
plt.ylabel('Runtime (seconds)') | ||
plt.grid(True) | ||
|
||
# Customizing the legend | ||
legend_labels = { | ||
'Use Cache = True': 'blue', # Blue line and markers for Use Cache = True | ||
'Use Cache = False': 'orange' # Orange line and markers for Use Cache = False | ||
} | ||
|
||
handles = [plt.Line2D([0, 0], [0, 0], color=color, marker='o', linestyle='') for color in legend_labels.values()] | ||
labels = legend_labels.keys() | ||
plt.legend(handles, labels, title='Legend') | ||
|
||
plt.tight_layout() | ||
plt.show() | ||
|
||
|
||
|
||
########################### | ||
|
||
if __name__ == "__main__": | ||
import logging, experiments_csv | ||
|
||
experiments_csv.logger.setLevel(logging.INFO) | ||
|
||
run_cache_experiment_tabu_search() | ||
df = analyze_experiment_results_cache() | ||
plot_runtime_vs_cache(df, 'Tabu Search') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.