Keypoint detection on custom dataset. We have 1 class - Glass and it have 4 keypoints. In this this tutorial we will train our yolov7 model to detect these 4 custom keypoints
Install Docker on your system if you haven't already. You can download it from the official website: https://www.docker.com/get-started
Now,Installing coco-annotator using docker:
git clone https://github.com/jsbroks/coco-annotator.git
cd coco-annotator
docker-compose up
http://localhost:5000/
Learn how to annotate: https://www.youtube.com/watch?v=OMJRcjnMMok&t=1s
Refernce for conversion: https://github.com/WongKinYiu/yolov7/issues/1103
git clone https://github.com/AarohiSingla/YOLOv7-POSE-on-Custom-Dataset
cd YOLOv7-POSE-on-Custom-Dataset
pip install -r requirements.txt
Place your dataset folder in this repo.
Make all the changes which are mentioned in this video: https://youtu.be/OP-oiDsEVzc
For Training:
!python train.py --data data/custom_kpts.yaml --cfg cfg/yolov7-w6-pose_custom.yaml --hyp data/hyp.pose.yaml --device 0 --kpt-label --epochs 600
For Keypoint Detection:
!python detect.py --weights runs/train/exp3/weights/best.pt --kpt-label --source 1.jpg --conf 0.030 --iou 0.30
Reference:
https://github.com/WongKinYiu/yolov7/tree/pose
https://github.com/ruiz-manuel/yolov7-pose-custom