Skip to content

Commit

Permalink
fixed typos corbin pointed out
Browse files Browse the repository at this point in the history
  • Loading branch information
Bart Snapp authored and Bart Snapp committed Mar 21, 2014
1 parent 7abb17f commit 43e379f
Show file tree
Hide file tree
Showing 6 changed files with 8 additions and 8 deletions.
4 changes: 2 additions & 2 deletions public/textbook/basicsOfDerivatives.tex
Original file line number Diff line number Diff line change
Expand Up @@ -548,7 +548,7 @@ \section{Slopes of Tangent Lines via Limits}
\addplot[color=penColor,fill=background,only marks,mark=*] coordinates{(4.5,0)}; %% open hole
\end{axis}
\end{tikzpicture}
Answer 2.1.6: (c) a sketch of $f'(x)$.
Answer 3.1.6: (c) a sketch of $f'(x)$.
\end{marginfigure}
\end{answer}
\end{exercise}
Expand Down Expand Up @@ -1142,7 +1142,7 @@ \subsection*{The Derivative of $\textit{e}^\textit{x}$}
\node at (axis cs:-.9,7) [anchor=west] {\color{penColor2!50!background}$(cf(x))'$};
\end{axis}
\end{tikzpicture}
Answer 2.2.21.
Answer 3.2.25.
\end{marginfigure}
\end{answer}
\end{exercise}
Expand Down
6 changes: 3 additions & 3 deletions public/textbook/chainRule.tex
Original file line number Diff line number Diff line change
Expand Up @@ -157,14 +157,14 @@ \section{The Chain Rule}
$g=g(x+h)$ and $g_0=g(x)$
\[
\frac{f(g(x+h))-f(g(x))}{h} = \left(f'(g(x)) +
E(g(x))\right)\frac{g(x+h)-g(x)}{h}.
E(g(x+h))\right)\frac{g(x+h)-g(x)}{h}.
\]
Taking the limit as $h$ approaches $0$, we see
\begin{align*}
\lim_{h\to 0}\frac{f(g(x+h))-f(g(x))}{h} &= \lim_{h\to 0}\left(f'(g(x))
+ E(g(x))\right)\frac{g(x+h)-g(x)}{h}\\
+ E(g(x+h))\right)\frac{g(x+h)-g(x)}{h}\\
&= \lim_{h\to 0}\left(f'(g(x))
+ E(g(x))\right)\lim_{h\to 0}\frac{g(x+h)-g(x)}{h}\\
+ E(g(x+h))\right)\lim_{h\to 0}\frac{g(x+h)-g(x)}{h}\\
&= f'(g(x))g'(x).
\end{align*}
Hence, $\ddx f(g(x))= f'(g(x))g'(x)$.
Expand Down
4 changes: 2 additions & 2 deletions public/textbook/curveSketching.tex
Original file line number Diff line number Diff line change
Expand Up @@ -310,8 +310,8 @@ \section{The First Derivative Test}
$a$, then $f(a)$ is a local maximum.
\item If $f'(x)<0$ to the left of $a$ and $f'(x)>0$ to the right of
$a$, then $f(a)$ is a local minimum.
\item If $f'(x)$ has the same sign to the left and right of $f'(a)$,
then $f'(a)$ is not a local extremum.
\item If $f'(x)$ has the same sign to the left and right of $a$,
then $f(a)$ is not a local extremum.
\end{itemize}
\end{mainTheorem}

Expand Down
2 changes: 1 addition & 1 deletion public/textbook/functions.tex
Original file line number Diff line number Diff line change
Expand Up @@ -733,7 +733,7 @@ \subsection{A Word on Notation}
\begin{answer}
$h^{-1}(20)=7$. This means that a height of 20 meters is achieved
at 7 seconds in the restricted interval. In fact, it turns out that
$h^{-1}(t) = 7 \cdot (\pi - \arcsin((t-20)/9))/\pi$ when $h$ is
$h^{-1}(t) = 7 \cdot (\pi - \arcsin((t-20)/18))/\pi$ when $h$ is
restricted to the given interval.
\end{answer}
\end{exercise}
Expand Down
Binary file modified public/textbook/mooculus-print.pdf
Binary file not shown.
Binary file modified public/textbook/mooculus.pdf
Binary file not shown.

0 comments on commit 43e379f

Please sign in to comment.