-
Notifications
You must be signed in to change notification settings - Fork 52
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4e1fd33
commit 307f6f1
Showing
9 changed files
with
1,594 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,2 @@ | ||
*~ | ||
*.o | ||
*/XSBench |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
#include "XSbench_header.h" | ||
|
||
SimulationData grid_init_do_not_profile( Inputs in, int mype ) | ||
{ | ||
// Structure to hold all allocated simuluation data arrays | ||
SimulationData SD; | ||
|
||
// Keep track of how much data we're allocating | ||
size_t nbytes = 0; | ||
|
||
// Set the initial seed value | ||
uint64_t seed = 42; | ||
|
||
//////////////////////////////////////////////////////////////////// | ||
// Initialize Nuclide Grids | ||
//////////////////////////////////////////////////////////////////// | ||
|
||
if(mype == 0) printf("Intializing nuclide grids...\n"); | ||
|
||
// First, we need to initialize our nuclide grid. This comes in the form | ||
// of a flattened 2D array that hold all the information we need to define | ||
// the cross sections for all isotopes in the simulation. | ||
// The grid is composed of "NuclideGridPoint" structures, which hold the | ||
// energy level of the grid point and all associated XS data at that level. | ||
// An array of structures (AOS) is used instead of | ||
// a structure of arrays, as the grid points themselves are accessed in | ||
// a random order, but all cross section interaction channels and the | ||
// energy level are read whenever the gridpoint is accessed, meaning the | ||
// AOS is more cache efficient. | ||
|
||
// Initialize Nuclide Grid | ||
SD.length_nuclide_grid = in.n_isotopes * in.n_gridpoints; | ||
SD.nuclide_grid = (NuclideGridPoint *) malloc( SD.length_nuclide_grid * sizeof(NuclideGridPoint)); | ||
assert(SD.nuclide_grid != NULL); | ||
nbytes += SD.length_nuclide_grid * sizeof(NuclideGridPoint); | ||
for( int i = 0; i < SD.length_nuclide_grid; i++ ) | ||
{ | ||
SD.nuclide_grid[i].energy = LCG_random_double(&seed); | ||
SD.nuclide_grid[i].total_xs = LCG_random_double(&seed); | ||
SD.nuclide_grid[i].elastic_xs = LCG_random_double(&seed); | ||
SD.nuclide_grid[i].absorbtion_xs = LCG_random_double(&seed); | ||
SD.nuclide_grid[i].fission_xs = LCG_random_double(&seed); | ||
SD.nuclide_grid[i].nu_fission_xs = LCG_random_double(&seed); | ||
} | ||
|
||
// Sort so that each nuclide has data stored in ascending energy order. | ||
for( int i = 0; i < in.n_isotopes; i++ ) | ||
qsort( &SD.nuclide_grid[i*in.n_gridpoints], in.n_gridpoints, sizeof(NuclideGridPoint), NGP_compare); | ||
|
||
// error debug check | ||
/* | ||
for( int i = 0; i < in.n_isotopes; i++ ) | ||
{ | ||
printf("NUCLIDE %d ==============================\n", i); | ||
for( int j = 0; j < in.n_gridpoints; j++ ) | ||
printf("E%d = %lf\n", j, SD.nuclide_grid[i * in.n_gridpoints + j].energy); | ||
} | ||
*/ | ||
|
||
|
||
//////////////////////////////////////////////////////////////////// | ||
// Initialize Acceleration Structure | ||
//////////////////////////////////////////////////////////////////// | ||
|
||
if( in.grid_type == NUCLIDE ) | ||
{ | ||
SD.length_unionized_energy_array = 0; | ||
SD.length_index_grid = 0; | ||
} | ||
|
||
if( in.grid_type == UNIONIZED ) | ||
{ | ||
if(mype == 0) printf("Intializing unionized grid...\n"); | ||
|
||
// Allocate space to hold the union of all nuclide energy data | ||
SD.length_unionized_energy_array = in.n_isotopes * in.n_gridpoints; | ||
SD.unionized_energy_array = (double *) malloc( SD.length_unionized_energy_array * sizeof(double)); | ||
assert(SD.unionized_energy_array != NULL ); | ||
nbytes += SD.length_unionized_energy_array * sizeof(double); | ||
|
||
// Copy energy data over from the nuclide energy grid | ||
for( int i = 0; i < SD.length_unionized_energy_array; i++ ) | ||
SD.unionized_energy_array[i] = SD.nuclide_grid[i].energy; | ||
|
||
// Sort unionized energy array | ||
qsort( SD.unionized_energy_array, SD.length_unionized_energy_array, sizeof(double), double_compare); | ||
|
||
// Allocate space to hold the acceleration grid indices | ||
SD.length_index_grid = SD.length_unionized_energy_array * in.n_isotopes; | ||
SD.index_grid = (int *) malloc( SD.length_index_grid * sizeof(int)); | ||
assert(SD.index_grid != NULL); | ||
nbytes += SD.length_index_grid * sizeof(int); | ||
|
||
// Generates the double indexing grid | ||
int * idx_low = (int *) calloc( in.n_isotopes, sizeof(int)); | ||
assert(idx_low != NULL ); | ||
double * energy_high = (double *) malloc( in.n_isotopes * sizeof(double)); | ||
assert(energy_high != NULL ); | ||
|
||
for( int i = 0; i < in.n_isotopes; i++ ) | ||
energy_high[i] = SD.nuclide_grid[i * in.n_gridpoints + 1].energy; | ||
|
||
for( long e = 0; e < SD.length_unionized_energy_array; e++ ) | ||
{ | ||
double unionized_energy = SD.unionized_energy_array[e]; | ||
for( long i = 0; i < in.n_isotopes; i++ ) | ||
{ | ||
if( unionized_energy < energy_high[i] ) | ||
SD.index_grid[e * in.n_isotopes + i] = idx_low[i]; | ||
else if( idx_low[i] == in.n_gridpoints - 2 ) | ||
SD.index_grid[e * in.n_isotopes + i] = idx_low[i]; | ||
else | ||
{ | ||
idx_low[i]++; | ||
SD.index_grid[e * in.n_isotopes + i] = idx_low[i]; | ||
energy_high[i] = SD.nuclide_grid[i * in.n_gridpoints + idx_low[i] + 1].energy; | ||
} | ||
} | ||
} | ||
|
||
free(idx_low); | ||
free(energy_high); | ||
} | ||
|
||
if( in.grid_type == HASH ) | ||
{ | ||
if(mype == 0) printf("Intializing hash grid...\n"); | ||
SD.length_unionized_energy_array = 0; | ||
SD.length_index_grid = in.hash_bins * in.n_isotopes; | ||
SD.index_grid = (int *) malloc( SD.length_index_grid * sizeof(int)); | ||
assert(SD.index_grid != NULL); | ||
nbytes += SD.length_index_grid * sizeof(int); | ||
|
||
double du = 1.0 / in.hash_bins; | ||
|
||
// For each energy level in the hash table | ||
#pragma omp parallel for | ||
for( long e = 0; e < in.hash_bins; e++ ) | ||
{ | ||
double energy = e * du; | ||
|
||
// We need to determine the bounding energy levels for all isotopes | ||
for( long i = 0; i < in.n_isotopes; i++ ) | ||
{ | ||
SD.index_grid[e * in.n_isotopes + i] = grid_search_nuclide( in.n_gridpoints, energy, SD.nuclide_grid + i * in.n_gridpoints, 0, in.n_gridpoints-1); | ||
} | ||
} | ||
} | ||
|
||
//////////////////////////////////////////////////////////////////// | ||
// Initialize Materials and Concentrations | ||
//////////////////////////////////////////////////////////////////// | ||
if(mype == 0) printf("Intializing material data...\n"); | ||
|
||
// Set the number of nuclides in each material | ||
SD.num_nucs = load_num_nucs(in.n_isotopes); | ||
SD.length_num_nucs = 12; // There are always 12 materials in XSBench | ||
|
||
// Intialize the flattened 2D grid of material data. The grid holds | ||
// a list of nuclide indices for each of the 12 material types. The | ||
// grid is allocated as a full square grid, even though not all | ||
// materials have the same number of nuclides. | ||
SD.mats = load_mats(SD.num_nucs, in.n_isotopes, &SD.max_num_nucs); | ||
SD.length_mats = SD.length_num_nucs * SD.max_num_nucs; | ||
|
||
// Intialize the flattened 2D grid of nuclide concentration data. The grid holds | ||
// a list of nuclide concentrations for each of the 12 material types. The | ||
// grid is allocated as a full square grid, even though not all | ||
// materials have the same number of nuclides. | ||
SD.concs = load_concs(SD.num_nucs, SD.max_num_nucs); | ||
SD.length_concs = SD.length_mats; | ||
|
||
if(mype == 0) printf("Intialization complete. Allocated %.0lf MB of data.\n", nbytes/1024.0/1024.0 ); | ||
|
||
return SD; | ||
|
||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
#include "XSbench_header.h" | ||
|
||
#ifdef MPI | ||
#include<mpi.h> | ||
#endif | ||
|
||
int main( int argc, char* argv[] ) | ||
{ | ||
// ===================================================================== | ||
// Initialization & Command Line Read-In | ||
// ===================================================================== | ||
int version = 20; | ||
int mype = 0; | ||
double omp_start, omp_end; | ||
int nprocs = 1; | ||
unsigned long long verification; | ||
|
||
#ifdef MPI | ||
MPI_Status stat; | ||
MPI_Init(&argc, &argv); | ||
MPI_Comm_size(MPI_COMM_WORLD, &nprocs); | ||
MPI_Comm_rank(MPI_COMM_WORLD, &mype); | ||
#endif | ||
|
||
// Process CLI Fields -- store in "Inputs" structure | ||
Inputs in = read_CLI( argc, argv ); | ||
|
||
// Set number of OpenMP Threads | ||
//omp_set_num_threads(in.nthreads); | ||
|
||
// Print-out of Input Summary | ||
if( mype == 0 ) | ||
print_inputs( in, nprocs, version ); | ||
|
||
// ===================================================================== | ||
// Prepare Nuclide Energy Grids, Unionized Energy Grid, & Material Data | ||
// This is not reflective of a real Monte Carlo simulation workload, | ||
// therefore, do not profile this region! | ||
// ===================================================================== | ||
|
||
SimulationData SD; | ||
|
||
// If read from file mode is selected, skip initialization and load | ||
// all simulation data structures from file instead | ||
if( in.binary_mode == READ ) | ||
SD = binary_read(in); | ||
else | ||
SD = grid_init_do_not_profile( in, mype ); | ||
|
||
// If writing from file mode is selected, write all simulation data | ||
// structures to file | ||
if( in.binary_mode == WRITE && mype == 0 ) | ||
binary_write(in, SD); | ||
|
||
|
||
// ===================================================================== | ||
// Cross Section (XS) Parallel Lookup Simulation | ||
// This is the section that should be profiled, as it reflects a | ||
// realistic continuous energy Monte Carlo macroscopic cross section | ||
// lookup kernel. | ||
// ===================================================================== | ||
|
||
if( mype == 0 ) | ||
{ | ||
printf("\n"); | ||
border_print(); | ||
center_print("SIMULATION", 79); | ||
border_print(); | ||
} | ||
|
||
// Start Simulation Timer | ||
omp_start = omp_get_wtime(); | ||
|
||
// Run simulation | ||
if( in.simulation_method == EVENT_BASED ) | ||
{ | ||
if( in.kernel_id == 0 ) | ||
verification = run_event_based_simulation(in, SD, mype); | ||
else | ||
{ | ||
printf("Error: No kernel ID %d found!\n", in.kernel_id); | ||
exit(1); | ||
} | ||
} | ||
else | ||
{ | ||
printf("History-based simulation not implemented in OpenMP offload code. Instead,\nuse the event-based method with \"-m event\" argument.\n"); | ||
exit(1); | ||
} | ||
|
||
if( mype == 0) | ||
{ | ||
printf("\n" ); | ||
printf("Simulation complete.\n" ); | ||
} | ||
|
||
// End Simulation Timer | ||
omp_end = omp_get_wtime(); | ||
|
||
// ===================================================================== | ||
// Output Results & Finalize | ||
// ===================================================================== | ||
|
||
// Final Hash Step | ||
verification = verification % 999983; | ||
|
||
// Print / Save Results and Exit | ||
int is_invalid_result = print_results( in, mype, omp_end-omp_start, nprocs, verification ); | ||
|
||
#ifdef MPI | ||
MPI_Finalize(); | ||
#endif | ||
|
||
return is_invalid_result; | ||
} |
Oops, something went wrong.