Skip to content

967255/spikformer

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spikformer: When Spiking Neural Network Meets Transformer, ICLR 2023

Reference

If you find this repo useful, please consider citing:

@inproceedings{
zhou2023spikformer,
title={Spikformer: When Spiking Neural Network Meets Transformer },
author={Zhaokun Zhou and Yuesheng Zhu and Chao He and Yaowei Wang and Shuicheng YAN and Yonghong Tian and Li Yuan},
booktitle={The Eleventh International Conference on Learning Representations },
year={2023},
url={https://openreview.net/forum?id=frE4fUwz_h}
}

Our codes are based on the official imagenet example by PyTorch, pytorch-image-models by Ross Wightman and SpikingJelly by Wei Fang.

Requirements

timm==0.5.4

cupy==10.3.1

pytorch==1.10.0+cu111

spikingjelly==0.0.0.0.12

pyyaml

data prepare: ImageNet with the following folder structure, you can extract imagenet by this script.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Training on ImageNet

Setting hyper-parameters in imagenet.yml

cd imagenet
python -m torch.distributed.launch --nproc_per_node=8 train.py

Testing ImageNet Val data

cd imagenet
python test.py

Training on cifar10

Setting hyper-parameters in cifar10.yml

cd cifar10
python train.py

Training on cifar10DVS

cd cifar10dvs
python train.py

About

spiking transformer

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%