Skip to content

This is a reference implementation of the paper "RE-GCN: Relation Enhanced Graph Convolutional Network for Entity Alignment in Heterogeneous Knowledge Graphs"

Notifications You must be signed in to change notification settings

869277160/REGCN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

REGCN

This repo provides a reference implementation of REGCN as described in the paper:

Yang, J., Zhou, W., Wei, L., Lin, J., Han, J., Hu, S. (2020). RE-GCN: Relation Enhanced Graph Convolutional Network for Entity Alignment in Heterogeneous Knowledge Graphs. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12113. Springer, Cham. https://doi.org/10.1007/978-3-030-59416-9_26

Basic Usage

Code reference

  • Config.py:实验参数配置。
  • evaluation.py:提供测试中的距离、准确率计算功能。
  • IOUtils.py:文件读写模块。
  • layers.py:模块化GCN。
  • model.py:REGCN模型。
  • pp_JLER.py:提供数据预处理功能,包含数据集分割、训练、测试。
  • run.py:实验入口程序。
  • utils.py:工具箱,多个功能实现。文件未处理,可能包含了多个其他实验过程所需代码。

Run the code

由于这是后期其他同学帮忙整理出的代码,代码虽然可以跑通,但是不能保证实验结果完全相同。

运行前需要将数据与代码组织成如下结构:

cd ./REGCN

# run the model 
python run.py 

Datasets

the datasets could be found in the following links: REGCN_data

Cite

If you find REGCN useful for your research, please consider citing us :

@InProceedings{10.1007/978-3-030-59416-9_26,
    author="Yang, Jinzhu
    and Zhou, Wei
    and Wei, Lingwei
    and Lin, Junyu
    and Han, Jizhong
    and Hu, Songlin",
    editor="Nah, Yunmook
    and Cui, Bin
    and Lee, Sang-Won
    and Yu, Jeffrey Xu
    and Moon, Yang-Sae
    and Whang, Steven Euijong",
    title="RE-GCN: Relation Enhanced Graph Convolutional Network for Entity Alignment in Heterogeneous Knowledge Graphs",
    booktitle="Database Systems for Advanced Applications",
    year="2020",
    publisher="Springer International Publishing",
    address="Cham",
    pages="432--447",
    isbn="978-3-030-59416-9"
}

About

This is a reference implementation of the paper "RE-GCN: Relation Enhanced Graph Convolutional Network for Entity Alignment in Heterogeneous Knowledge Graphs"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages