This repo provides a reference implementation of REGCN as described in the paper:
Yang, J., Zhou, W., Wei, L., Lin, J., Han, J., Hu, S. (2020). RE-GCN: Relation Enhanced Graph Convolutional Network for Entity Alignment in Heterogeneous Knowledge Graphs. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12113. Springer, Cham. https://doi.org/10.1007/978-3-030-59416-9_26
- Config.py:实验参数配置。
- evaluation.py:提供测试中的距离、准确率计算功能。
- IOUtils.py:文件读写模块。
- layers.py:模块化GCN。
- model.py:REGCN模型。
- pp_JLER.py:提供数据预处理功能,包含数据集分割、训练、测试。
- run.py:实验入口程序。
- utils.py:工具箱,多个功能实现。文件未处理,可能包含了多个其他实验过程所需代码。
由于这是后期其他同学帮忙整理出的代码,代码虽然可以跑通,但是不能保证实验结果完全相同。
运行前需要将数据与代码组织成如下结构:
cd ./REGCN
# run the model
python run.py
the datasets could be found in the following links: REGCN_data
If you find REGCN useful for your research, please consider citing us :
@InProceedings{10.1007/978-3-030-59416-9_26,
author="Yang, Jinzhu
and Zhou, Wei
and Wei, Lingwei
and Lin, Junyu
and Han, Jizhong
and Hu, Songlin",
editor="Nah, Yunmook
and Cui, Bin
and Lee, Sang-Won
and Yu, Jeffrey Xu
and Moon, Yang-Sae
and Whang, Steven Euijong",
title="RE-GCN: Relation Enhanced Graph Convolutional Network for Entity Alignment in Heterogeneous Knowledge Graphs",
booktitle="Database Systems for Advanced Applications",
year="2020",
publisher="Springer International Publishing",
address="Cham",
pages="432--447",
isbn="978-3-030-59416-9"
}