This project is a online client-server model for supply chain management.
This project is Zhe Liu's thesis of my bachelor's degree for Zhejiang University.
Any use without prior notice is not allowed.
- Clone this repo, switch to
docker
branch - Install docker
- Run
docker build -t data-mining .
- Run
docker-compose up -d --build
- Go to
localhost:8000
, all done
- Clone this repo, switch to
master
branch - Install python3 first
- Install all dependencies in
requirement.txt
- Run
python manage.py runserver
- Go to
localhost:8000
, all done
- Clone this repo, switch to
server
branch - Configure nginx
uwsgi --http :8000 --chdir /root/dataMining/ -w djangoData.wsgi
- Configure path and allowed host
-STATIC_URL = '/static/' +STATIC_URL = '/polls/static/' +STATIC_ROOT = '/root/dataMining/polls/static/'
- Follow the same requirements as
Configure Python environment locally
- Go to 'ServerIP:8000', all done
- 0.1 CSV preview and nav bars, writing templates for home page and all sub-pages
- 0.2 Classification tempalte and base logic set up
- 0.3 Finished Classification
- 0.4 Finished documention tempaltes and documents for Classification
- 0.5 Clustering tempalte and base logic set up
- 0.6 Finished Clustering
- 0.7 Finished documention for clustering
- 0.8 Deploy this software to server
- 0.9 Finished Aporiori based association rules, finished upload and downloading functionalities
- 1.0 Adding detailed documentation and all functionalities for parameters adjustment
- Show all data uploaded
- File upload and download
- Using Ajax to dynamically change HTML element.
- Using Django tempaltes for all types of demand
- Configure Django URL config different functionalities
- Using OOP for Django views
- More data fomat support: xls
- More data fomat support: text file
- Missing data handling
- More advanced Missing data handling(fix missing data automatically)
- char to digit tranformation
- Clustering: KMeans
- Clustering:Mini Batch KMeans
- Clustering:Affinity Propagation
- Clustering:Mean Shift
- Clustering:Spectral Clustering
- Clustering:Agglomerative Clustering
- Clustering:DBSCAN
- Clustering:Birch
- Documentation for Clustering
- Parameters Adjustment for Clustering
- Classification:Logistic Regression
- Classification:KNeighbors Classifier
- Classification:SVC
- Classification:GradientBoosting Classifier
- Classification:DecisionTree Classifier
- Classification:Random Forest Classifier
- Classification:MLP Classifier
- Classification:Gaussian Naive Bayes
- Documentation for classification
- Parameters Adjustment for Classification
- Apriori algorithm
- Parameters for Apriori algorithm
- Full documentation for Apriori algorithm
- More association rules algorithm