Skip to content

610265158/faceboxes-tensorflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

introduction

A tensorflow 2.0 implement faceboxes.

CAUTION: this is the tensorflow2 branch, if you need to work on tensorflow1, please switch to tf1 branch

And some changes has been made in RDCL module, to achieve a better performance and run faster:

  1. input size is 512 (1024 in the paper), then the first conv stride is 2, kernel size 7x7x12.
  2. replace the first maxpool by conv 3x3x24 stride 2
  3. replace the second 5x5 stride2 conv and maxpool by two 3x3 stride 2 conv
  4. anchor based sample is used in data augmentaion.

codes like below

    with tf.name_scope('RDCL'):
     net = conv2d(net_in, 12, [7, 7], stride=2,activation_fn=tf.nn.relu, scope='init_conv1')
     net = conv2d(net, 24, [3, 3], stride=2, activation_fn=tf.nn.crelu, scope='init_conv2')
    
     net = conv2d(net, 32, [3, 3], stride=2,activation_fn=tf.nn.relu,scope='conv1x1_before1')
     net = conv2d(net, 64, [3, 3], stride=2, activation_fn=tf.nn.crelu, scope='conv1x1_before2')
     
     return net

I want to name it faceboxes++ ,if u don't mind

Pretrained model can be download from:

Evaluation result on fddb

fddb

fddb
0.96

Speed: it runs over 70FPS on cpu (i7-8700K), 30FPS (i5-7200U), 140fps on gpu (2080ti) with fixed input size 512, tf2.0, multi thread. And i think the input size, the time consume and the performance is very appropriate for application :)

Hope the codes can help you, contact me if u have any question, [email protected] .

requirment

  • tensorflow2.0

  • tensorpack (data provider)

  • opencv

  • python 3.6

useage

train

  1. download widerface data from http://shuoyang1213.me/WIDERFACE/ and release the WIDER_train, WIDER_val and wider_face_split into ./WIDER,

  2. download fddb, and release FDDB-folds into ./FDDB , 2002,2003 into ./FDDB/img

  3. then run python prepare_data.pyit will produce train.txt and val.txt

    (if u like train u own data, u should prepare the data like this: ...../9_Press_Conference_Press_Conference_9_659.jpg| 483(xmin),195(ymin),735(xmax),543(ymax),1(class) ...... one line for one pic, caution! class should start from 1, 0 means bg)

  4. then, run:

    python train.py

    and if u want to check the data when training, u could set vis in train_config.py as True

finetune

  1. (if u like train u own data, u should prepare the data like this: ...../9_Press_Conference_Press_Conference_9_659.jpg| 483(xmin),195(ymin),735(xmax),543(ymax),1(class) ...... one line for one pic, caution! class should start from 1, 0 means bg)

  2. set config.MODEL.pretrained_model='./model/detector/variables/variables', in train_config.py, and the model dir structure is :

    ./model/
    ├── detector
    │   ├── saved_model.pb
    │   └── variables
    │       ├── variables.data-00000-of-00001
    │       └── variables.index
    
  3. adjust the lr policy

  4. python train.py

evaluation

    python test/fddb.py [--model [TRAINED_MODEL]] [--data_dir [DATA_DIR]]
                          [--split_dir [SPLIT_DIR]] [--result [RESULT_DIR]]
    --model              Path of the saved model,default ./model/detector
    --data_dir           Path of fddb all images
    --split_dir          Path of fddb folds
    --result             Path to save fddb results

example python model_eval/fddb.py --model model/detector --data_dir 'FDDB/img/' --split_dir FDDB/FDDB-folds/ --result 'result/'

visualization

A demo

  1. python vis.py --img_dir your_images_dir --model model/detector

  2. or use a camera: python vis.py --cam_id 0 --model model/detector

You can check the code in vis.py to make it runable, it's simple.

reference

Releases

No releases published

Packages

No packages published

Languages